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ABSTRACT: The development of inverse design, where
computational optimization techniques are used to design
devices based on certain specifications, has led to the
discovery of many compact, nonintuitive structures with
superior performance. Among various methods, large-scale,
gradient-based optimization techniques have been one of the
most important ways to design a structure containing a vast
number of degrees of freedom. These techniques are made
possible by the adjoint method, in which the gradient of an
objective function with respect to all design degrees of
freedom can be computed using only two full-field
simulations. However, this approach has so far mostly been
applied to linear photonic devices. Here, we present an extension of this method to modeling nonlinear devices in the frequency
domain, with the nonlinear response directly included in the gradient computation. As illustrations, we use the method to devise
compact photonic switches in a Kerr nonlinear material, in which low-power and high-power pulses are routed in different
directions. Our technique may lead to the development of novel compact nonlinear photonic devices.
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In recent years, there has been significant interest in using
computational optimization tools to design novel nano-

photonic devices with a wide range of applications.1−19 Much
of this progress1−12 is made possible by the adjoint
method,18,20 a technique that allows the gradient of an
objective function to be computed with respect to an arbitrarily
large number of degrees of freedom using only two full-field
simulations. Since a very large number of design parameters
can then be adjusted simultaneously, the number of structures
that need to be evaluated in order to reach a high-performing
design can be far smaller compared with the total number of
structures in the search space. Therefore, this method makes
possible gradient-based design of electromagnetic structures
with respect to a large number of free parameters.
Up to now, in photonics the adjoint method has been mostly

applied to gradient-based optimization of linear optical devices.
The generalization of the adjoint method to nonlinear optical
devices would create new possibilities in several exciting fields
such as on-chip lasers,21 frequency combs,22 spectroscopy,23

neural computing,24 and quantum information processing.25

To this end, several recent works26−28 have applied adjoint
methods to engineer linear devices to display favorable
properties for nonlinear optical applications, such as high
quality factors, small mode volume, or large field overlap
between the modes of interest. However, these works do not
directly optimize the nonlinear systems.
To solve for the adjoint sensitivity of a nonlinear system, the

standard option is to work within a time-domain adjoint

formalism, which entails simulating an additional linear system
with a time-varying permittivity.3 However, as this formalism
requires the storage of the fields at each time step, it has
substantial memory requirements. Furthermore, because in
many cases the steady-state behavior of the system is of
interest, a frequency-domain approach is preferred as the
steady-state response can be obtained directly, without the
need for going through a large number of time steps as in a
time-domain simulation. The general mathematical formalism
for the adjoint method in nonlinear systems is known in the
applied mathematics literature.29 But, with the exception of a
very recent preprint that seeks to design a nonlinear element in
an optical neural network,24 such a formalism has not been
previously applied to nonlinear photonic device optimizations.
In this work we outline, in detail, how the adjoint method

may be used to optimize the steady-state response of a
nonlinear optical device in the frequency domain. We first
outline a formalism for generalizing adjoint problems to
arbitrary nonlinear problems. Then, as a demonstration, we use
our method to inverse-design photonic switches with Kerr
nonlinearity. Our results may be applied more generally to
other objective functions and sources of nonlinearity and
provides new possibilities for designing novel nonlinear optical
devices.
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■ NONLINEAR ADJOINT METHOD
We first outline the formulation of the adjoint method for the
inverse design of nonlinear optical devices. The goal of inverse
design is to find a set of real-valued design variables φ that
maximize a real-valued objective function φ= *e e( , , ),
where is, most generally, a nonlinear function of its
arguments. While for linear systems, e is a complex-valued
vector corresponding to the electric field solution to linear
Maxwell’s equations, in nonlinear problems, we may write e as
the solution to a nonlinear equation

φ* =f e e( , , ) 0 (1)

For example, eq 1 may represent the steady-state Maxwell’s
equations with an intensity-dependent permittivity distribution
where e is the electric field distribution. We note that, for the
problems we study, the natural choice is to take e and e* as
independent parameters, as opposed to treating separately the
real and imaginary parts of e.30,31 The solution to eq 1 may be
found with any nonlinear equation solver, such as with the
Newton−Raphson method.32 We further note that the
treatment of e and its complex conjugate as independent
variables is necessary for differentiation as will be shown later.
The aim of the optimization is to maximize the objective

function with respect to the design variables φ. For this
purpose, it is essential to compute the sensitivity of with
respect to each element of φ. For simplicity, we derive the
derivative of the objective function with respect to a single
parameter φ, which is written

φ φ φ φ
= ∂
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∂ *
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ed

d
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Or, in matrix form as
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To compute de/dφ and de*/dφ, we differentiate eq 1:
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Equation 4 together with its complex conjugate then yields
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Thus, formally we can rewrite eq 3 as
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In analogy with the linear adjoint method, we can now

compute the gradient by solving an additional linear system.
We define a complex-valued adjoint field eadj as the solution to

∂ ∂ + ∂ * ∂ * = − ∂ ∂f e e f e e e( / ) ( / ) ( / )T T T
adj adj (6)

We note that, in practice, eq 6 can be computed by solving
the system
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We note that the adjoint problem, as required to determine the
derivative of the objective function, is a linear problem, even
though the physical problem, as defined by eq 1, is nonlinear.
Finally, the gradient of the objective function is then

φ φ φ
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e
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d
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jjjj
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{
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(8)

where denotes taking the real part. In deriving eq 8, we have
used the fact that both and φ are real. In the case of multiple
parameters φ, we can simply replace ∂f/∂φ with the matrix
∂f/∂φ. Since eadj only needs to be solved once regardless of the
number of parameters, gradients may be computed with very
little marginal cost for an arbitrary number of free parameters,
making large-scale, gradient-based optimization possible.

■ APPLICATION TO KERR NONLINEARITY
We now apply the general formalism as discussed above to the
optimization of nonlinear optical systems. Since the formalism
is applicable to linear optical systems as well, for illustration
purposes here we use it to treat both the linear and the
nonlinear cases, in order to highlight aspects that are unique to
nonlinear systems. A schematic outlining the two cases is
presented in Figure 1. For a linear system, Maxwell’s equations
for the steady state at a frequency ω0 may be written as

μ ω ω∇ × ∇ × − ϵ ϵ = −− iE r r E r J r( ) ( ) ( ) ( )0
1

0
2

0 r 0 (9)

where E(r) is the electric field, J(r) is the electric current
source, ϵr(r) is the relative dielectric permittivity, and we have
assumed relative permeability μr = 1 everywhere. Compactly,
and to make connection to the general formalism in the
previous section, this can be written in matrix form as

φ ϵ* = − =Af e e e b( , , ) ( ) 0r (10)

where A is a linear operator, vectors e and ϵr now contain the
electric fields and the relative permittivity, respectively, and b is
a vector proportional to the current source. The design
parameter φ in this case is the permittivity distribution ϵr.
Equation 10 can be solved to obtain the electric fields e, as
diagrammed by Figure 1(a).
We assume an objective function that depends on the

field solution to eq 10, and we take the linear relative
permittivity distribution as the set of design variables. Because
∂f/∂e = A and ∂f/∂e* = 0 for the linear system, from eq 6, the
adjoint field may be written simply as the solution to the
equation

ϵ = − ∂ ∂A e e( ) ( / )T T
r adj (11)

as shown in Figure 1(b). For a reciprocal system, AT = A; thus
the original and the adjoint fields are solutions to the same
linear problem but with different source terms. Note that the
source for the adjoint field, − ∂ ∂e( / )T depends on both the
objective function and the original solution.
Once the adjoint field is computed, the gradient of the

objective function with respect to the permittivity distribution
is given, through eq 8, by
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Having reviewed the adjoint formalism for linear optical
systems, we now consider nonlinear optical systems. As an
example, we introduce Kerr nonlinearity into the system,33

which corresponds to an intensity-dependent permittivity:

ω χϵ∼ = ϵ + ϵ | |r r r E r( ) ( ) 3 ( ) ( )r r 0
2

0
(3) 2

(14)

where χ(3)(r) is the nonlinear susceptibility distribution. Other
types of nonlinear terms can also be treated with the formalism
outlined above. Replacing ϵr(r) in eq 9 with ϵr̃(r) in eq 14, our
system is then described by the equation

φ χϵ* = − =Af e e e e b( , , ) ( , , ) 0nl r (15)

where Anl ≡ [A(ϵr) − diag(χ⊙|e|2)]. Here, ⊙ is element-wise
vector multiplication and diag(v) represents a diagonal matrix
with vector v on the main diagonal. The vector χ corresponds
to the term 3ω0

2ϵ0χ
(3)(r) and |e|2 ≡ e⊙e*. Again, for

concreteness, the design parameters φ correspond to the
permittivity ϵr. The solution to this problem is diagrammed in
Figure 1(c).
From eq 15 we may now compute the partial derivatives of f

with respect to the electric fields e, which is needed to
construct the adjoint problem.

χ∂ ∂ = − ⊙ | |Af e e/ 2diag( )2
(16)

χ∂ * ∂ = − ⊙ * ⊙ *f e e e/ diag( ) (17)

With this, we then express the adjoint field as the solution to
eq 6, as diagrammed in Figure 1(d). A technical remark is due:
in the linear electromagnetic system, solving for the adjoint
field with N grid points requires solving one complex-valued
linear problem of size (N × N), equivalent to two real-valued
problems of size (N × N). For the nonlinear electromagnetic
system, because of the coupling between eadj and eadj* and the
particular structure of eq 7, the adjoint problem can be written
as a real-valued linear system of size (2N × 2N). This has the
same complexity scaling with N as the linear case. We also note
that the discretized formulation of the nonlinear adjoint
method given here is directly relevant to the numerical results
presented below, but in the Supporting Information we also
sketch a continuous-variable analogue of the formulation.
Once the adjoint field is computed, the gradient ϵd /d r is

evaluated from eq 13 as in the linear case. Here for simplicity
we do not assume any explicit dependence of the nonlinearity
on the design variable. However, the formalism is straightfor-
ward to extend to that case, as explained in the Supporting
Information.

Figure 1. Illustration of the adjoint field computation for a linear and
a nonlinear system. (a) Linear system driven by a point source b with
an objective function given by the field intensity at a measuring
point. (b) Adjoint problem for the linear system: the same system
driven by a point source given by −∂ ∂e/ located at the measuring
point. (c) Nonlinear system containing a medium with Kerr
nonlinearity (red). The electric fields are the solution to a nonlinear
equation. (d) Adjoint problem for the nonlinear system, which is a
linear system of equations for the adjoint field and its complex
conjugate. The Kerr medium is replaced by a linear region whose
permittivity depends on the nonlinear fields.

Figure 2. Inverse design demonstration of a 1 → 1 port switch. (a) Optical power is input into the left port (purple arrow). The goal of optimizing
the design region (blue square) is to maximize power transmission in the linear regime (blue arrow) and minimize transmission in the nonlinear
regime (red arrow). The final permittivity distribution after optimizing is also shown. The black regions are chalcogenide with a relative permittivity
of 5.95 and a χ(3) of 4.1 × 10−19 m2/V2. The waveguide regions outside the design region have a width of 0.3 μm. The operating wavelength is 2
μm. (b) Transmission as a function of input power, demonstrating the switching behavior at around 10−3 W/μm. The dashed black line indicates
the input power used for the high-power regime in the optimization. (c, d) Amplitude of the simulated electric field of the final structure, in the
linear (c) and nonlinear (d) regimes, respectively, with an input power of 10−9 and 0.157 W/μm, respectively. Ez corresponds to the out-of-plane
electric field in the 2D simulation.
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■ INVERSE DESIGN OF OPTICAL SWITCHES

We now demonstrate the use of this nonlinear adjoint
formalism to inverse design optical switches with desired
power-dependent performance characteristics. In Figures 2 and
3, we show the optimization procedures and performance
characteristics of a 1 → 1 and 1 → 2 port device, respectively.
The operating frequency for both devices corresponds to a
free-space wavelength of 2 μm.
For each device, we seek to maximize the corresponding

objective function with respect to the permittivity distribution
within a fixed design region. To perform the numerical
optimization of the structure, we use the finite-difference
frequency-domain method (FDFD),34 where the fields and
operators of eq 9 are spatially discretized using a Yee lattice.35

For simplicity, we restrict our study to two-dimensional
structures (i.e., structures with infinite extent in the third
dimension) and transverse-magnetic polarization, which has
only nonzero out-of-plane electric field components. In the
optimization process, we start with an initial relative
permittivity in the design region. We solve the electric field
distribution in the structure by solving the nonlinear eq 15.
Then, we compute the gradient of with respect to the
relative permittivity at every point in the design region using eq
13. With the gradient information, we perform updates of the
design variables using the limited-memory BFGS36 algorithm,
although a simple gradient ascent algorithm would also suffice.

This procedure is repeated until convergence on a final
structure.
We choose optimization parameters corresponding to a

device made from chalcogenide glass (Al2S3), which exhibits a
strong χ(3) response and high damage threshold.33,37,38 During
the optimization, the relative permittivity was constrained to lie
between 1 (air) and 5.95 (Al2S3). We further assume that the
materials exhibit nonlinearity only within the design regions
outlined in Figures 2 and 3.
To create a more realistic final structure, the strength of the

nonlinear susceptibility was assumed to be proportional to the
“density” of the material, ρ, defined as

ρ =
ϵ −
ϵ −

r
r

( )
( ) 1

1
r

m (18)

where ϵm is the permittivity of the material. This assumption
ensures that air regions do not exhibit a nonlinear refractive
index. Equation 18 adds an ϵr dependence in the nonlinear
susceptibility, which is straightforwardly treated in the adjoint
method, as discussed in the Supplementary Information. Low-
pass spatial filtering and projection techniques39 were applied
during optimization to create binarized (air and chalcogenide)
final structures with large, smoothed features. Additional
details on this are described in the Supporting Information.
Our first device, as shown in Figure 2, consists of a

waveguide-fed 1 → 1 port geometry with a central design

Figure 3. Inverse design demonstration of a 1 → 2 port switch. (a) Optical power is input into the left port (purple arrow). The goal of optimizing
the design region (blue square) is to maximize the power transmission to the right port (blue arrow) in the linear regime and maximize
transmission to the bottom port (red arrow) in the nonlinear regime. The final permittivity distribution after optimizing is also shown. (b)
Transmission in the right (blue) and bottom (red) ports as a function of input power, demonstrating the switching behavior at around 2 × 10−2 W/
μm. The dashed black line indicates the input power used for the high-power regime in the optimization. (c, d) Amplitude of the simulated electric
field of the final structure, in the linear (c) and nonlinear (d) regimes, respectively, with an input power of 10−9 and 0.057 W/μm, respectively.

ACS Photonics Letter

DOI: 10.1021/acsphotonics.8b01522
ACS Photonics 2018, 5, 4781−4787

4784

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b01522/suppl_file/ph8b01522_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b01522/suppl_file/ph8b01522_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.8b01522


region. We optimize this design region to maximize power
transmission in the linear regime when the incident power is
sufficiently low such that the nonlinear terms do not affect the
transmission, and minimize transmission in the nonlinear
regime when the incident power is at a specific high value such
that the nonlinearity plays a significant role. This corresponds
to an objective function of the form

= | | − | |e e m e m e( , ) T T
low high low

2
high

2
(19)

where elow and ehigh are the simulated fields with a low and a
high input power, respectively, m is the modal profile of the
electric field for the waveguide in the output port, and the
objective function is normalized such that its maximum value is
1. The optimization setup and the optimized structure are
diagrammed in Figure 2(a). The final structure resembles a
resonator between two Bragg mirrors, effectively acting like a
bistable switch.40,41 Figure 2(b) shows the transmission as a
function of the input power, and it clearly switches from high
to low as the input power increases. This is also illustrated in
panels (c) and (d), where we plot the field amplitude
distributions in the low-power (high-transmission) regime and
in the high-power (low-transmission) regime, respectively. The
computed power transmission coefficients for these two panels
are 98.2% and 3.1%, respectively. The value of the input power
used in the optimization and in panel (d) is shown by a dashed
line in panel (b). At this input power, the device exhibits a
maximum nonlinear refractive index shift of 4.0 × 10−3, which
is below the damage threshold for Al2S3 using sub-nanosecond
pulses42 (see Supporting Information). The transmission
spectrum of this structure gives a resonance peak with a full-
width at half-maximum of 38 GHz (see Supporting
Information). In the Supporting Information, we also list the
specific optimization parameters and show the value of the
objective function during the optimization process. Reaching
the final optimized structure shown in Figure 2 required the
evaluation of 2000 structures, but a reasonably high-perform-
ing structure is already reached after only a few hundred
iterations. This relatively small number of iterations should be
contrasted with the vast size of the parameter space spanned by
the 12 250 points contained in the design region.
We also use the same technique for the inverse design of a 1

→ 2 port switch where light is guided to the right port in the
linear regime and to the bottom port in the nonlinear regime.
To achieve this design, we define the objective function as

= | | − | |

− | | + | |

e e m e m e

m e m e

( , ) T T

T T

low high r low
2

r high
2

b low
2

b high
2

(20)

where mr and mb denote the mode profiles of the waveguides
in the right and bottom ports, respectively. These are
normalized such that the objective function has a maximum
value of 1 for a perfect switching operation. The setup of the
optimization problem and the final design are diagrammed in
Figure 3(a). We note that the device displays a nonintuitive
geometry while retaining large features and good binarization.
In Figure 3(b), we plot the transmission through the right

and through the bottom ports as a function of input power.
This clearly shows the switching of power from the right port
to the bottom port in the linear and nonlinear regimes,
respectively. Specifically, in the linear regime, the device has a
power transmission of 81.8% and 5.9% to the right and bottom
ports, respectively, while in the nonlinear regime, at the input

power marked by the dashed line in Figure 3(b), these values
are 6.1% and 80.8%, respectively. The electric field amplitudes
for linear and nonlinear regimes are displayed in Figure 3(c,d).
The operational bandwidth for this device is approximately 90
GHz (see Supporting Information). The device exhibits a
maximum nonlinear refractive index shift of 3.9 × 10−3, which
is also below the acceptable damage threshold for Al2S3 using
sub-nanosecond pulses.42 In this optimization, the parameter
space is spanned by the permittivity of 22 500 points in the
design region. A full list of optimization parameters and a plot
of the objective function versus iteration number is shown in
the Supporting Information.

■ DISCUSSION
We have presented an extension to the adjoint variable method
applied to the optimization of an electromagnetic system with
Kerr nonlinearity. Our approach can be straightforwardly
applied to other types of nonlinearities that do not mix
frequencies, such as saturable gain or absorption. Moreover,
the methods here should be straightforwardly generalizable to
treat nonlinear problems involving frequency mixing. For
example, one can imagine implementing a similar adjoint
method in combination with the multifrequency finite-
difference frequency-domain implementations for nonlinear
wave interactions.43

In addition to the design of optical switches, our formalism
may prove useful for many other interesting problems in
nonlinear photonics. For example, one could apply our
approach to design nonlinear elements in optical neural
networks44 with specific forms of activation functions. Another
interesting application is power regulation in photonic
networks. For example, as photonic networks for laser-driven
particle accelerators45 must be able to handle large input
powers, it may be of interest to use our approach to design
compact optical limiters in these networks. For the purposes of
exploring these and many other potential applications, we have
made publicly available a software package that implements the
algorithms discussed here.46

To summarize this paper, we have developed an adjoint
method, which enables gradient optimization of nonlinear
photonic devices. Our work broadens the capability of inverse
design for producing novel nonlinear devices.
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(27) Lin, Z.; Loncǎr, M.; Rodriguez, A. W. Topology optimization of
multi-track ring resonators and 2D microcavities for nonlinear
frequency conversion. Opt. Lett. 2017, 42, 2818.
(28) Bravo-Abad, J.; Rodriguez, A.; Bermel, P.; Johnson, S. G.;
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