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ABSTRACT: A fundamental challenge in the design of photonic devices, and
electromagnetic structures more generally, is the optimization of their overall architecture
to achieve a desired response. To this end, topology or shape optimizers based on the
adjoint variable method have been widely adopted due to their high computational
efficiency and ability to create complex freeform geometries. However, the functional
understanding of such freeform structures remains a black box. Moreover, unless a design
space of high-performance devices is known in advance, such gradient-based optimizers
can get trapped in local minima valleys or saddle points, which limits performance
achievable through this inverse design process. To elucidate the relationships between
device performance and nanoscale structuring while mitigating the effects of local minima
trapping, we present an inverse design framework that combines adjoint optimization,
automated machine learning, and explainable artificial intelligence. Integrated with a
numerical electromagnetic simulation method, our framework reveals structural contributions toward a figure-of-merit (FOM) of
interest. Through an explanation-based reoptimization process, this information is then leveraged to minimize the FOM further than
that obtained through adjoint optimization alone, thus overcoming the optimization’s local minima. We demonstrate our framework
in the context of waveguide splitter design and achieve between 39 and 74% increases in device performance relative to state-of-the-
art adjoint optimization-based inverse design across a range of telecom wavelengths. Our results highlight machine learning strategies
that can substantially extend and enhance the capabilities of a conventional, optimization-based inverse design algorithm while
revealing deeper insights into the algorithm’s designs.
KEYWORDS: nanophotonics, deep learning, explainability, adjoint optimization, automated machine learning

■ INTRODUCTION

Effectively optimizing nanophotonic structures is key to their
use in a broad range of optical applications. For example,
photonic integrated circuits, metasurfaces, and guided-wave
systems can be geometrically manipulated at subwavelength
scales to deliver a wide range of functionalities.1−5 However, a
large design space must be rapidly explored in order to
optimize the geometry for a particular application. To
effectively navigate such a design space, gradient-based
optimization algorithms such as the adjoint variable method
have been widely adopted to design nonintuitive or irregularly
shaped electromagnetic structures that are highly efficient at
accomplishing a particular goal. By calculating the shape
derivatives at all points in space using only two electromagnetic
simulations per iteration,6 adjoint optimizations are orders of
magnitude more computationally efficient than alternative
optimization methods and capable of achieving state-of-the-art
performance.6−9

Although adjoint optimization-based methods have been
successfully applied to a variety of photonic systems,10−13 the
method’s reliance on gradient-based information means that
the method is local in nature and therefore bounded by the

corresponding limitations. Specifically, since the design space
for electromagnetic structures is predominantly nonconvex,
adjoint optimizations (or gradient-based optimization algo-
rithms in general) are susceptible to getting stuck in local
minima valleys or saddle points (hereon collectively referred to
as local minima).14,34 Thus, unless a region of high-
performance devices is known in advance, multiple optimiza-
tion runs are needed (typically by using random starting
points) to arrive at a single optimization target.15 To overcome
these limitations, recent efforts have combined machine
learning (ML) with adjoint optimization. For example,
population-based inverse design was demonstrated using global
topology-optimization networks, or GLOnets,16 which inte-
grate the adjoint method directly into the training process.
Alternative strategies also include the integration of ML and
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adjoint optimization as a two-step process, where the ML
component performs an initial global-search approximation,
and then the optimization improves design performance
further.16−18,40 Although both approaches can improve upon
the algorithm’s performance, the underlying issue of local
minima trapping remains unaddressed, since the integration
and use of a gradient-based optimizer inherently indicates that
the issue is still present. In this regard, metaheuristic
techniques such as simulated annealing have been proposed
to escape local minima in the search process.19,20 This method
may directly address the issue of local minima trapping
through neighbor-based exploration, but its application to
photonic shape and topology optimization has been severely
limited due to relatively low computational efficiency (on the
order of 1000 iterations).21,22

To comprehensively address the issue of local minima
trapping in adjoint optimization-based inverse design, we seek
to first identify the root of the problem and find what caused
the algorithm to get trapped in the first place. In the context of
the optical structures being optimized, arriving at certain
geometric elements and their resulting electromagnetic
response must contribute to guiding the optimization toward
suboptimal results. To discover the geometric features
responsible for local minima trapping and to then overcome
them, we employ an explainable artificial intelligence (XAI)-
based approach where a neural network is trained using data
output from the adjoint optimization method. XAI serves as a
promising candidate for addressing local minima trapping due

to its well-known ability to reveal a model’s decision making
process as well as the contributing factors thereof (i.e.,
addressing the black box problem).23−25 For example, XAI
can reveal the spatial regions of a nanophotonic structure that
contribute to the presence or lack of an absorption peak.26

Thus, to explain the causes of local minima trapping in
gradient-based adjoint optimization and subsequently use this
information to prevent the optimization from converging onto
suboptimal states, we present an XAI-based framework that
utilizes the relationships between device efficiency and
nanoscale structuring to increase overall inverse design
optimization performance.

■ METHODS

We demonstrate our optimization framework in the context of
Y-splitter waveguide design (Figure 1a), where the objective is
to optimize the shape of the silicon−oxide interface to
maximize power transmission efficiency from an input port
to two output ports of the same width. Here, we represent the
objective function as a decreasing figure-of-merit (FOM)
which ranges from 1 to 0, where 0 represents ideal
performance. With this definition in place, adjoint shape
optimizations are performed on an initial Y-splitter design to
minimize the FOM (Figure 1b) across a range of target
wavelengths in the telecommunication window (1.3−1.8 μm).
The design and FOM information from the optimizations are
used (as training data) in conjunction with neural architecture

Figure 1. (a) Nanophotonic device optimization: silicon-on-insulator Y-junction splitter for telecom applications. (b) Multiple adjoint optimization
runs are applied to the Y-splitter design at various target wavelengths. (c) Results of the optimizations are used as training data in automated
machine learning (AutoML) to train a neural network, where the inputs are images and the outputs are device figure-of-merits (FOM) and target
wavelengths. (d) Explainable AI algorithms are used on the neural network to capture feature explanations, (e) which are used to optimize device
performance further by allowing the algorithm to escape its local minima.
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search to automate the training of an ML model (AutoML).
After training, the model learns the relationships between the
device structure and performance by accurately predicting the
FOM and target wavelength of an input design (Figure 1c).
We then use a suite of XAI algorithms, SHapley Additive
exPlanations or SHAP (a post hoc explanation technique based
on game theory27), on the model to extract the structure−
performance relationships as “feature explanation” heatmaps
(Figure 1d). By interrogating our trained ML model, the
explanations here inform the structural features that contribute
to the FOM of interest. Using this information, we devise a
boundary extraction algorithm that takes the explanations and
makes guided design changes that enable the optimization to
escape its local minima (Figure 1e). These design changes then
provide a new starting point for the local adjoint optimization
method, which allows the method to reach lower FOMs, or
higher device performances,than previously achievable (at
multiple target wavelengths).

■ RESULTS AND DISCUSSION
Adjoint Optimization and Convolutional Neural

Network Training. We first developed our training dataset
by performing multiple adjoint shape optimization runs on a
starting Y-splitter design (Figure 2a). We applied a widely
adopted implementation of the adjoint method that is
integrated with a commercial finite-difference time-domain
solver.28 The 2D cross-sections of the Y-splitter designs are
represented as black and white images, where the black and
white pixels represent the permittivity of silicon and SiO2,
respectively. In our configuration of the adjoint method, the
optimizable region is the area between the input and output
ports, while the port sizes remain fixed. The optimizable
geometry within this region is defined using the level set
method and cubic spline interpolations.28,29 Each optimization

run was performed on randomized starting designs (waveguide
structures with 25, 35, 40, and 50% fill fractions; collectively
shown in Figure S2) using different operating wavelengths as
optimization objectives (1.3−1.8 μm in 0.1 μm steps) to
produce a collection of device designs with gradual perform-
ance improvements. Performance improvement is indicated by
a decreasing FOM (as design iteration increases), until a
plateau is reached. As shown in Figure 2a (here, the 35% fill
fraction starting design), each design iteration consists of a
forward and adjoint (i.e., time-reversed) simulation, which
calculates the shape derivative over the entire optimizable
region and modifies the geometry (per iteration) in proportion
to the FOM gradient.6 At the final iteration “N” (which may
vary across each optimization run), device geometry is tailored
to achieve maximum attainable performance with respect to
the sought target. In our application of the adjoint method, the
FOM represents the power coupling of guided modes and is
defined as follows:

P
T TFOM

1
( )

( ) ( ) d0∫λ
λ λ= | − | λ

(1)

where λ is the evaluated wavelength, T is the actual power
transmission through the output ports, T0 is the ideal power
transmission, and P is the source power (in Watts). Thus, the
FOM is the difference between the input and output
transmission normalized by the power injected by the source,
which results in the maximum performance at 0. Figure 2b
shows the results of each optimization run, where the collective
FOM information and corresponding designs (at each
iteration; not including the starting design) are used as
training data for deep learning.
From the optimized structures shown in Figure 2, unique

geometries are obtained for each target wavelength, which in

Figure 2. (a) Training data generation. Adjoint optimization runs are performed on random starting designs (35% fill fraction starting design
shown) across target wavelengths ranging from 1.3 to 1.8 μm to produce high-performance devices in the telecom window. (b) FOM vs design
iterations across each optimization run. (c) Training and validation losses for the AutoML-optimized neural network shows high training accuracy
and model convergence.
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turn yield a range of FOM values. Therefore, the FOM and
target wavelength are coupled with one another, and both are
dependent on the waveguide structure. Thus, to ensure that
our model simultaneously learns both of these properties,
which in turn captures more information regarding the
structure than models trained on the properties individually,
we designed a single neural network that takes the Y-splitter
geometries as inputs (here, 128 × 64 pixel images, or 2.5 ×
1.25 μm2 domains) and outputs both FOM and target
wavelength. In the particular design space we explored, over
600 input and output pairs were generated for the neural
network. For ease of training, target wavelengths were
converted into categorical labels, where a position-specific
output node value of 1 represents the wavelength of a specific
design, while the other positional nodes equal 0. For example,
a target wavelength (Tλ) of 1.3 μm is represented as T1.3 =
[1,0,0,0,0,0], 1.4 μm is T1.4 = [0,1,0,0,0,0], and this pattern is
repeated up to 1.8 μm. Alternatively, argmax(Tλ) or the index
of the maximum value along the vector represents the target
wavelength. Combined with a floating point value (ranging
from 0 to 1) to serve as the FOM, we devise a training data
structure that is amenable to both classification and regression-
based tasks. With this input−output relationship defined, as
well as a 90:10 training−validation data split, we use neural
architecture search (AutoKeras30) with image blocks to
automate the deep learning process by testing different
model variants across multiple trials. We observe that the
optimal architecture was identified after 12 trials, which had a
validation loss of 9.1 × 10−5. The final training and validation
losses of each trial are presented in Figure S1a, and the
evolution of the convolutional neural network (CNN)
architecture from the first trial to the last is shown in Figure

S1b. The optimized CNN possesses five convolutional blocks
(with 512, 256, 128, 64, and 32 filters, respectively) followed
by a dense layer. Each block contains Leaky ReLu, batch
normalization, and max pooling layers. Training progression of
the optimized architecture is shown in Figure 2c, where a
strong convergence between the training and validation losses
can be observed. We further verified our model’s performance
through cross validation and overfitting analyses (found in
Tables S1 and S2 and Figures S12 and S13 of the Supporting
Information).

Structure Explanation and Reoptimization. After
training our machine learning model, we next sought to
explain the relationship between the overall shape and FOM
such that this information can be leveraged to potentially
further optimize the devices, and overcome any local minima
the adjoint method may have arrived at. To verify that the
model properly learned the structure−FOM relationship, we
passed the final design iterations (of each target wavelength)
into the trained model and compared the ground truth outputs
to the model’s predictions. The comparison is shown in Figure
3a, where we observe a strong match (over 90% accuracy)
between the predictions (blue points) and ground truths
(orange points). The inset images in Figure 3a are model
inputs. From this result, we can infer that the model accurately
learned the key features on the optimized structures, which
contribute to the target wavelength-specific FOM values.
Therefore, we can utilize XAI to reveal the structure−
performance relationships of each device. Specifically, we
employed an explanation strategy for photonic designusing
SHAPto highlight the device feature contributions to their
respective FOM.26 These feature contribution heatmaps
(represented as SHAP values, ϕ(x,y), ranging from −1 to 1)

Figure 3. (a) Comparisons between model predictions and ground truths, for FOM (regression) and target wavelength (classification) values, show
that the model accurately learned the relationship between the device structure and performance. Inset images show the model inputs, which are
adjoint-optimized devices. (b) SHAP explanation heatmaps of the optimized devices reveal the structural features that contribute positively (blue)
or negatively (red) toward optimal device performance. Note that this is the reverse of conventional SHAP definitions due to our desired FOM
being minimized.
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are illustrated in Figure 3b, where the blue and red pixels
indicate positive and negative contributions toward the FOM,
respectively. We note that this is the reverse of conventional
SHAP definitions due to our desired FOM being minimized.
We then leverage the information captured by the XAI
algorithm, and manipulate the structure accordingly, to assess
its effect on device performance.
To determine how to practically use the SHAP values

(represented as red/blue heatmap pixels), we first note that
high concentrations of blue pixels are located throughout a
majority of each structure, while the center of the structures
and select portions of the outer boundaries contain large
regions of red pixels. In this regard, since the training data
solely consist of geometries with varying degrees of shape
changes at the SOI (silicon-on-insulator) boundary, and no
geometry change is introduced within the structure (i.e., no
material subtractions or white pixels are inside the main island
of black pixels), we focus our analysis on the SHAP values
located at the structure boundary rather than the center.
Following the aforementioned principles of positive and
negative contributions, we define the red regions along the
structure boundaries as negative contributions toward device
performance that should be removed from the design.
Accordingly, we devised a boundary extraction algorithm to
systematically adjust the shape of the adjoint-optimized devices
using the explanation heatmaps. The algorithm, conceptually

illustrated in Figure 4a, consists of an initial filtering procedure,
which identifies the red-to-blue transition points along the
structure boundary. In this procedure, a binarization function
is applied to the SHAP values that convert the structure into
existing and nonexisting elements (shown in the center of
Figure 4a as white and black pixels, respectively). Thresholds
for binarization (ρ(x,y)) are given by the following step
function:

x y
x y

x y
( , )

1 for ( , ) 0

1 for ( , ) 0

l
m
ooo
n
ooo

ρ =
Φ ≤

Φ > (2)

where ρ(x,y) = 1 and ρ(x,y) = 0 indicate existing and
nonexisting elements, respectively. A median filter is applied to
the binarization to reduce noise. Next, we “draw” a new
boundary around the existing elements (Figure 4a, right) by
capturing an array of points η(x,y) = [Xi;Yi] in which Xi =
[x1,x2,...,xi] and Yi = [y1,y2,...,yi] are vectors of length i. Xi is an
evenly spaced set of x-coordinate values from the left to the
right of the image. Since i ultimately determines the resolution
of the shape, we set its value to 20 points (matching the
interval used in the initial optimization runs) to ensure that the
optimizable geometry is within a feasible fabrication range.
This interval equates to 100 nm spacing along the x axis, which
is well within CMOS lithography resolutions. Each point on
the spline can range from 0 to 1.25 μm in 20 nm steps Thus,

Figure 4. (a) Schematic representation of our explanation-optimization algorithm and workflow, consisting of explanation, filtering, and boundary
extraction steps. (b) Comparison between the adjoint-optimized and explanation-optimized geometries.
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the number of parameter permutations describing the design
are in the order of 1 × 10.30 To find the y-coordinate values in
Yi, we apply Algorithm 1 in the Supporting Information.
Using Algorithm 1, we raster the image (from top to

bottom) across all values in Xi to find the points where existing
elements are found (indicated by P(x,y) = 1), and then mark
these points for Yi. For quality purposes, we add the α
hyperparameter to enhance robustness by reducing sharp
changes in the structure as a result of filtering or noise from the
explanations. We apply this workflow to each wavelength-
specific adjoint-optimized structure from the previous step and
present the new “explanation-optimized” results in Figure 4b.
As an example of our method’s application, for the 1.3 μm
target design, we note that the explanation algorithm deemed
the large vertical spike near the input port as a negative (red)
contribution. After applying our explanation-based boundary
extraction process, the height of the spike was reduced.
To assess whether the explanation (or SHAP value)-based

modifications to the optimized structures (e.g., the spike
reduction) yielded meaningful or effective contributions, we
simulated the explanation-optimized designs and used them as
new starting points for a second stage of adjoint optimization
runs. In Figure 5, we show the FOM evolutions over the entire
optimization cycle of the 35% fill fraction starting design. The
explanations and optimization cycles of the remaining starting
designs can be found in Figures S2−S5. The red arrows
indicate the end of the first optimization stage and the
beginning of the second explanation-based reoptimization
stage. Further observation revealed that in the second stage of
the 1.3 μm target design, reducing the vertical spike
immediately reduced the FOM from 0.139 to 0.090 (a 35%
improvement) at the first iteration, while the end of the
optimization resulted in a final FOM of 0.050 (a 64%
improvement compared to the end of the first stage). This
result indicates that the explanation-based modifications
overcame a saddle point in the original adjoint optimization
process. In some of the other examples (e.g., 1.4−1.8 μm), the

first step of the second stage did not always result in an
immediate FOM reduction, particularly when the FOM value
was already exceedingly low (<0.075). We validate in Figure S6
that this increase in the FOM is due to the optimization getting
stuck in a local minima valley instead of a saddle point, since
the FOM must first increase before the algorithm can identify a
lower global minima, particularly when modifying the design
from where the optimization algorithm ended. However, across
all the optimization targets, the end of every second-stage
optimization consistently resulted in a lower final FOM than
the first-stage FOM (a 39% decrease on average). Moreover,
an increase in FOM followed by a further global reduction is
indicative of an objective function that was previously stuck in
a local minimum.14 Thus, we demonstrate that our
explanation-based reoptimization technique is capable of
enhancing the performance of the adjoint optimization
algorithm by allowing the FOM to escape its local minima
for various optimization targets and performance ranges. We
note that this entire workflow only used two optimization runs
per target: one for feature contribution learning and the other
for local minima escape or global FOM reduction. As
previously mentioned, alternative methods at identifying
lower minima typically involve repeated optimizations at
random starting points or metaheuristic approaches, which can
scale well-beyond two optimization runs per target (in the
order of 1000 iterations in the case of simulated anneal-
ing).21,22

In the proceeding sections, we further assess the perform-
ance of the presented optimization scheme by conducting a
number of additional tests, including (1) an evaluation of the
ability for SHAP to immediately improve the FOM (if the
adjoint optimization is stopped prematurely) to determine the
link between structure modifications and FOM improvements
(i.e., an “early stop” analysis), (2) the applicability of our
approach on a smaller dataset and (3) different material
systems, and (4) comparisons of our approach against arbitrary
perturbations to the adjoint-optimized structure (i.e., a

Figure 5. Two-stage optimization of SOI waveguide designs, across target wavelengths ranging from 1.3 to 1.8 μm, using the 35% fill fraction
starting design. Red arrows indicate the end of the first adjoint optimization stage and the beginning of the second explanation-based
reoptimization stage. Final FOM values are improved by 39%, on average, across all target wavelengths.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.1c01636
ACS Photonics 2022, 9, 1577−1585

1582

https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.1c01636/suppl_file/ph1c01636_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.1c01636/suppl_file/ph1c01636_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.1c01636/suppl_file/ph1c01636_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c01636?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c01636?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c01636?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c01636?fig=fig5&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://doi.org/10.1021/acsphotonics.1c01636?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


“random change” analysis). First, to verify that the model is
actually learning how to modify the structure, in our “early
stop” analysis, we removed the portion of the training data
where the adjoint optimization reached the local minima,
retrained our model, and repeated our explanation-based
modification. We observe in Figure S7 that across all target
wavelengths, the final FOM obtained through the SHAP
explanations is lower than the best available design, thereby
confirming that the model is learning how to modify the
structure to improve the FOM (based on the information it
was given to learn).
Since there is substantial precedence in the existing literature

on using explainable artificial intelligence with small training
datasets (in the order of several dozens to hundreds of data
points), particularly to reduce the burden of data collection or
computation costs,35−39 we have repeated our study on a
reduced dataset using only the optimization results from a
single starting design (35% fill fraction). Results of this analysis
are shown in Figures S8 and S9, where we also observe
performance improvements (43% on average) for all target
wavelengths, which suggests that the proposed approach is
applicable (to a degree) to smaller datasets.
Next, we evaluated the generalizability of the proposed

framework by applying it to other contemporary nanophotonic
design challenges. We note that prior studies have successfully
applied XAI to alternative nanophotonic structures, such as
metasurfaces, and demonstrated performance enhancements in
the form of spectral property tuning26 (though no optimization
algorithm integration was employed). Thus, we focused this
generalizability analysis on material alternatives. In this regard,
over the past few years, Si3N4 has emerged as a promising
alternative to silicon in photonic systems. Compared to silicon,
Si3N4 has lower propagation losses and does not exhibit two-
photon absorption in the telecommunication range3,31−33

(among other pros and cons). Accordingly, we performed
the same two-stage optimization study on an Si3N4 waveguide
(for the same Y-splitter starting geometry) and found that the
second-round optimizations were also able to surpass the
results of the first at every target wavelength (Figure S10).
Across all the test cases, an average FOM improvement of 74%
was achieved.
Finally, to show that the achieved performance enhance-

ments were not simply obtained through arbitrary perturba-
tions to the optimized structure, we performed an additional
“random change” analysis where we randomly modified the
first-stage structures, repeated the second stage of optimiza-
tions, and compared the results. This comparison is presented
in Figure S11, where five random modifications (defined in the
Supporting Information) were made to each structure. Across
the 30 tests performed on the six optimized designs, all of the
randomly modified structures possess higher FOM values (i.e.,
lower performance) than those of the explainability-optimized
devices, while only two “random change” results fall within
25% of the explainability-optimized device performance.
Additionally, 28 tests produced higher final FOM values than
the initial optimized designs. Therefore, not only are the
random changes ineffective in terms of escaping the local
minima, but they can also inadvertently push the optimization
into a worse state compared to where the optimization started
at. As such, we demonstrate that our XAI-based approach is
not stochastic in nature, but can deterministically tune a
structure in order to maximize performance. Through the
preceding series of tests, we show that the presented approach

is generally applicable to numerous applications of adjoint
optimization for electromagnetic design, including those with
different constituent materials, structures, and optimization
targets.

■ CONCLUSIONS
In summary, we presented an inverse design framework that
extends the capabilities of gradient-based shape or topology
optimization algorithms for photonic inverse design while
elucidating the relationships between device performance and
nanoscale structuring. Our framework combines adjoint
optimization, AutoML, and XAI to enhance device perform-
ance beyond that which is obtainable through the optimization
algorithm alone. We applied our method to SOI waveguide
design and showed that the optimization algorithm initially
reaches a performance plateau (i.e., local minima). After
utilizing XAI to reveal the device’s structural contributions
toward a designated FOM (where 0 represents ideal
performance), we leveraged this information (in conjunction
with a boundary extraction algorithm) to push the
optimization out of its local minima and reduce the FOM
further. Across a range of performance-plateaued devices
optimized for various wavelengths within the 1.3 to 1.8 μm
telecom window, our method was able to improve device
performance by an average of 39%. The entire procedure only
requires two optimization runs per optimization target, which
is potentially more computationally efficient than alternative
approaches, particularly those that rely on multiple optimiza-
tion runs and random starting points. Additionally, general-
izability tests performed on Si3N4 waveguides showed an
average of 74% device performance improvement. Thus, we
have demonstrated that our XAI-based approach provides an
automated and systematic solution for an electromagnetic
optimization algorithm to escape local minima and achieve
greater device performance. Looking ahead, integrating
conventional optimization and data-driven machine learning
will likely prove a fruitful direction for inverse design and
physics discovery in photonic systems.
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