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ABSTRACT: Deep-learning framework has significantly
impelled the development of modern machine learning
technology by continuously pushing the limit of traditional
recognition and processing of images, speech, and videos. In
the meantime, it starts to penetrate other disciplines, such as
biology, genetics, materials science, and physics. Here, we
report a deep-learning-based model, comprising two bidirec-
tional neural networks assembled by a partial stacking
strategy, to automatically design and optimize three-dimen-
sional chiral metamaterials with strong chiroptical responses
at predesignated wavelengths. The model can help to discover the intricate, nonintuitive relationship between a
metamaterial structure and its optical responses from a number of training examples, which circumvents the time-
consuming, case-by-case numerical simulations in conventional metamaterial designs. This approach not only realizes the
forward prediction of optical performance much more accurately and efficiently but also enables one to inversely retrieve
designs from given requirements. Our results demonstrate that such a data-driven model can be applied as a very powerful
tool in studying complicated light−matter interactions and accelerating the on-demand design of nanophotonic devices,
systems, and architectures for real world applications.
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Chirality refers to the structural property of an object
that cannot be superposed onto its mirror image. Due
to its universal existence in nature, ranging from

molecules at the nanoscale to gastropod shells at the
macroscale, chirality has attracted immense research interest
with important applications in spectroscopy,1,2 sensing,3,4

imaging,5,6 and pharmaceutical synthesis.7 Limited by the
small electromagnetic interaction volume, the chiroptical
response of natural materials is usually very weak and thus
difficult to be detected with high sensitivity.8 The advent of
metamaterials, which are composed of artificial meta-atoms
with elaborately engineered optical properties,9,10 offers an
elegant and effective solution to this problem.11 So far, various
intrinsic and extrinsic chiral metamaterials, both two-dimen-
sional and three-dimensional ones, have been demonstra-
ted.12−19 Although a set of symmetry requirements derived
from Jones matrices can guide the design of chiral
metamaterials,20,21 these guidelines are insufficient when we
want to quantitatively design a metamaterial structure given a
desired chiral response or even to simply predict the trend in
chiral response as the structure transforms. The difficulties arise
from the nonintuitive relationship between geometric chirality
and chiroptical responses, which is attributed to the
complicated interactions between different components in the
sophisticated meta-atom under illuminations of either left-

handed circularly polarized (LCP) or right-handed circularly
polarized (RCP) light.22

An efficient and comprehensive design scheme for chiral and
many other metamaterials should contain two major functions:
forward prediction that outputs the full optical responses given
the geometric parameters and inverse retrieval that outputs the
geometric parameters from the required optical responses.
Currently, the prediction task heavily relies on iterative, time-
consuming numerical simulations to solve Maxwell’s equations
on a case-by-case basis, whereas the retrieval task remains
extremely challenging with no general close-form solutions.
Common approaches to the inverse design problem include
genetic algorithm,23 level set methods,24 and topology
optimization.25 Nevertheless, the capability of such stochastic
algorithms is severely limited by their nature of random search,
and hence they are insufficient as the scale and complexity of
the problem grow.
Different from numerical optimization approaches, data-

driven methods based on machine learning (ML) can represent
and generalize complex functions or data, to uncover unknown
relations among a huge number of variables. Deep learning

Received: May 12, 2018
Accepted: June 1, 2018
Published: June 1, 2018

A
rtic

le
www.acsnano.orgCite This: ACS Nano 2018, 12, 6326−6334

© 2018 American Chemical Society 6326 DOI: 10.1021/acsnano.8b03569
ACS Nano 2018, 12, 6326−6334

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
M

A
R

Y
L

A
N

D
 B

A
L

T
IM

O
R

E
 C

O
U

N
T

Y
 o

n 
Se

pt
em

be
r 

23
, 2

02
2 

at
 2

0:
39

:2
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

www.acsnano.org
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsnano.8b03569
http://dx.doi.org/10.1021/acsnano.8b03569


(DL) is a type of representation learning, allowing computa-
tional models to learn multiple levels of abstract representations
of data layer by layer.26 It has dramatically improved the state of
the art in the domain of speech recognition,27 visual object
recognition,28 as well as decision making,29 with superior
advantages to discover intricate structures in large data sets by
using the back-propagation algorithm in training. Recently,
propelled by its success in computer vision and natural
language processing, DL has emerged as a revolutionary and
powerful methodology in many other research fields such as
materials science,30 chemistry,31 particle physics,32 quantum
mechanics,33,34 and microscopy.35 As the most widely used
component in a DL architecture, neural networks have been
applied to solve some design and prediction problems of
electromagnetism36−39 but with limited success largely because
of the shallow structure and thus poor representation capability.
Some very recent works have proposed deep neural networks
to model nanophotonic structures,40−42 which, however, are
mainly constructed by stacking several fully connected layers
and, therefore, can only deal with simple structure designs with
limited optical responses.
In this paper, we propose a purpose-designed deep-learning

architecture to automatically model and optimize three-
dimensional chiral metamaterials. The deep-learning scheme
is composed of two bidirectional neural networks aiming to
solve three basic tasks simultaneously, which are mutually
connected through an ensemble learning strategy of partial
stacking. In the forward modeling, it is a fast prototyping tool
with high accuracy comparable to numerical simulations, to
predict the full optical responses of a chiral structure under
different polarization conditions. On the other hand, given the
full optical responses, the network can be used to retrieve the
geometric parameters of the chiral meta-atom to solve the
inverse problem. Moreover, starting from some basic require-
ments on the frequency, amplitude, and polarity of the CD
resonance with no specifications in full spectra, the deep-
learning model can realize the design-on-demand function and
produce suitable geometric parameters of the meta-atom to
fulfill the given requirements. We envision that our work will
develop a new paradigm for the design of optical metamaterials
and nanophotonic structures, in general, in order to fully
control the amplitude, phase, polarization, and trajectory of
light on demand.

RESULTS AND DISCUSSION

Chiral Metamaterial Structure. The chiral metamaterial
under investigation is schematically shown in Figure 1. The unit
cell consists of two stacked gold split ring resonators (SRRs)
twisted at a certain angle and separated by two spacing
dielectric layers with a continuous gold reflector at the bottom.
Depending on the geometry, this metamaterial can function as
a chiral meta-mirror, enabling selective reflection of designated
circularly polarized light without reversing its handedness yet
high absorption of the other polarization state at a certain
wavelength.21,43,44 The thickness and width of the gold SRRs
are 50 and 200 nm, respectively, whereas the period of the unit
cell is fixed at 2.5 μm. Therefore, the structure of the chiral
meta-atom is determined by five design parameters, that is, top
SRR size l1, bottom SRR size l2, top spacer thickness t1, bottom
spacer thickness t2, and the twisted angle α. As the continuous
back reflector eliminates transmission, the chiroptical response
of the metamaterial is completely described by its reflection
coefficients. Considering two different polarization conditions
and optical reciprocity, we will focus on three characteristic
reflection spectra, that is, LCP-input-LCP-output (LL), RCP-
input-RCP-output (RR), and the cross-polarization term LCP-
input-RCP-output (RL) that is identical with RCP-input-LCP-
output (LR). Here RCP (LCP) is defined if the electric vector
rotates clockwise (counterclockwise) when an observer looks
along the wave propagation direction. The reflection spectra of
interest are set in the mid-infrared region from 30 to 80 THz
and discretized into 201 data points. The details about data set
collection can be found in the Methods section.

Deep-Learning Model Construction. The proposed
deep-learning model for designing chiral metamaterials is
schematically depicted in Figure 2. As indicated by the blue
dashed boundaries, the model contains a primary network
(PN) and an auxiliary network (AN), where both networks
have a bidirectional configuration allowing data to flow in both
a forward path and an inverse path. The two networks are
assembled by a stacking strategy,45 which not only improves the
accuracy of prediction but also expands the model functions at
the same time. The PN deals with the regression problem
between design parameters with the dimension of 1 × 5 and the
full reflection spectra with the dimension of 3 × 201. The
chiroptical response of the metamaterial can be characterized
by circular dichroism (CD), which is defined as the absorption
difference between LCP incidence and RCP incidence. We

Figure 1. Schematic of the designed chiral metamaterial. The inset is the zoomed-in structure of a single meta-atom.
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explicitly calculate CD from the three full reflection spectra for
each chiral metamaterial structure and model it separately using
the AN. The dataflow in the deep neural network is denoted by
the yellow arrows in Figure 2, where all the internal nodes
(design parameters, reflection spectra, and CD spectra,
highlighted by the purple box) can be treated as either input
or output nodes due to the nature of bidirectional mapping. PN
and AN are connected at two ends through a forward combiner
and an inverse combiner, as output ports for reflection spectra
or design parameters with improved accuracy (green ellipses).
In the forward path of PN, design parameters with the

dimension of 1 × 5 are transformed to reflection spectra with
the dimension of 3 × 201, indicating a very low input
dimension compared with output dimension for a regression
task. This huge mismatch makes it difficult for a network to
converge and generalize well, especially when the output
spectra have strong variation around resonant frequencies.
Previous research has tried to avoid this problem by
introducing binary input design parameters and using less
data points in the output spectra.40 In our approach, we adopt a
heuristic two-stage structure containing a tensor module
followed by an upsampling module, as indicated by the top
red dashed boundary in Figure 2. Unlike fully connected layers
that simply take linear combinations of the output from
previous neurons, tensor layers can model a second-order
relationship between a variable couple, which was first
proposed for knowledge base completion46 and was recently
applied in chemistry.47 Here, in our case, the tensor layer is
used in a self-contained manner in order to describe the
interdependency among the five design parameters. The output
of the tensor layer is given by

= + +f D W D V D Boutput ( )T
k ktensor (1)

where f is the rectified linear unit (RELU) activation function,
D is the row vector of five design parameters, k is the output
vector dimension, Wk is a k × 5 × 5 tensor, Vk is a k × 5 weight
matrix, and B is a k × 1 bias vector. The output dimension k is
chosen to be 50 in our design, and the two following hidden
layers both contain 500 neurons.
The tensor module is first trained in a supervised way, where

the full 3 × 201 reflection data points are uniformly down-
sampled to three 1 × 26 vectors, equivalently increasing the
frequency step from 0.25 to 4 THz. These subspectra, each
represented by a 1 × 26 vector, are used as the ground truth for
the pretraining of three parallel tensor units comprising a tensor
layer followed by two fully connected layers. After the three
parallel tensor units are trained, their outputs are merged into 3
× 26 subspectra and fed into the upsampling module to be
converted to the full reflection spectra with the dimension
increased from 3 × 26 to 3 × 201. In the inverse path of PN, a
typical convolutional neural network structure is employed with
two consecutive convolutional layers followed by a fully
connected layer. The inverse network is trained in the full
loop of PN with the aid of the well-trained forward path, similar
to the tandem training strategy recently reported,42 but with the
inverse error as a penalty term to enhance its robustness (see
Supporting Information for details).

Model Evaluation. After the training of PN is finished, we
use the test data that are unseen during training to evaluate the
model. Figure 3a,d plot two typical examples from the test set
for forward prediction of three reflection spectra, whereas the
histograms in Figure 3c,f show the corresponding inverse

Figure 2. Structure of the deep-learning model for designing chiral metamaterials. The model is composed of two bidirectional neural
networks (PN and AN) assembled by a forward combiner and an inverse combiner. Reflection spectra, CD spectra, and design parameters are
interconnected in the model (yellow arrows) and can be treated as either input or output at specific ports (fc, fully connected layer; conv,
convolutional layer; tconv, transposed convolutional layer).
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retrieval of the five geometric parameters. Both forward and
inverse paths of PN show reasonably good consistency
compared with the numerical simulations, evidently establishing
a bidirectional mapping between the geometric parameters and
optical responses of the chiral metamaterial. Despite of the
success of the purpose-designed PN, we notice that for the
forward prediction, the model performance (dashed lines)
degrades around resonant frequencies (i.e., 60 THz in Figure 3a
and 65 THz in Figure 3d) with large output error. From a
probabilistic viewpoint, the multilayer perceptron-based neural
network assumes conditional independence among neurons in
the same layer. For each neuron in the output layer, the
probability distribution is centered at its off-resonance value,
whereas its resonant value, highly deviated from the mean but
with very few samples during training, can hardly be captured
and modeled with high accuracy. On the other hand, as we use
the typical mean square error loss function in this regression
task that averages the error over the entire output, the
contribution of the narrow-banded resonant dips can be easily
diluted in the full spectra, leading the network to be trapped in
a local optimum that only fits the off-resonance part of the
reflection spectra very precisely.

In order to capture the fine spectra features around resonant
frequencies and to substantially expand the functionality of the
deep-leaning model at the same time, we explicitly create an
AN to directly associate design parameters with CD spectra.
The CD spectra are calculated from the three reflection spectra
and down-sampled to 26 data points. As enclosed in the lower
blue dashed boundary in Figure 2, AN also allows data to flow
bidirectionally between the five-dimensional design parameters
and the 26-dimensional CD spectra, but with simpler
architecture mainly due to the less complexed data structure.
The forward path has the same network structure as one of the
tensor units in PN, with one tensor layer followed by two fully
connected layers, whereas the inverse path consists of two fully
connected hidden layers each containing 400 neurons. The
prediction results of CD spectra by AN are shown in Figure
3b,e as blue dots, exhibiting very high consistency with
numerical simulations.
To complete the entire deep-learning model after AN is fully

trained, we use an ensemble learning approach of partial
stacking strategy to combine PN and AN. In the forward path,
the input design parameters simultaneously flow through PN
and AN with two prediction outputs of full reflections and CD.

Figure 3. Evaluation of the deep-learning model. (a,d) Forward prediction results from PN, in comparison with AN-modified forward
predictions. (b,e) CD spectra predicted by the forward path of AN. (c,f) Inverse prediction results from PN, in comparison with AN-modified
inverse predictions.
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Then a forward combiner is created to locally modify the full
reflection at a small spectra piece centered at the resonant
frequency covering a range of 4 THz (17 data points), with the
information provided by AN (see Supporting Information for
details). The performance of the forward prediction given by
the combiner is shown by the scattering points in Figure 3a,d,
which agrees with numerical simulation much better than the
original output from PN. The total test mean square error
drops from 0.00087 to 0.00080 after the modification module is
applied. Considering that the modified reflection differs from
the original PN prediction only by 17 points, such improve-
ment is significant when we check the spectra around resonant
frequencies. For the inverse path, the combiner takes both PN
and AN retrieved parameters as inputs and outputs a weighted
sum of them, where the two weights are obtained by training
on the given training data. Shown as the green bar in Figure
3c,f, the retrieval is improved overall when AN and the inverse
combiner are introduced.
Predicting Chiroptical Responses. The completely

established deep-learning model can be used as a fast
prototyping tool to study the optical response of the chiral
metamaterial. One example is to investigate the dependence of
chirality on the rotation angle α between the top and bottom
SRRs. Figures 4a,b demonstrate the evolution of CD spectra
when varying the rotation angle from 0 to 180°, whereas the
top SRR size, bottom SRR size, top spacer thickness, and
bottom spacer thickness are fixed at 1000, 1300, 300, and 500
nm, respectively. The predicted CD spectra (Figure 4a) from
the deep-learning model is calculated directly from the
modified forward output, showing reasonable consistency
with the numerical simulation (Figure 4b). The step of the
rotation angle in the two density plots is 1°, which costs 9 h of

numerical calculation using an i7-CPU personal computer but,
in contrast, only takes less than 1 s for deep-learning prediction.
Even though the training process takes some time, this is a one-
time cost and will become insignificant if the model is
repeatedly used.
Another very interesting finding is that the deep-learning

model can give a fairly accurate prediction when trained only by
a small number of data.48 As we have five-dimensional design
parameters, 25000 training data are equivalent to a sparsely
sample 7.6 points in the continuously varying rotation angle
between 0 and 180°. However, the model successfully predicts
the exact frequency of 72.25 THz, where CD can reach
maximum and minimum. The CD values at 72.25 THz
(indicated by white dashed line in the density plot) as a
function of rotation angle are plotted in Figure 4c, clearly
showing excellent agreement between simulation and pre-
diction, including the location and value of the extrema. This
proves that the proposed deep-learning model does not simply
perform averaging or interpolation but instead learns the highly
nonlinear relationship between the rotation angle and CD
value. To unveil the underlying physics of such high CD
contrast originated from a relatively small change in rotation
angle, the electric field distribution under incidence with
different polarization conditions is explored (Figure 4d). For
the chiral metamaterial with an 81° rotation angle, RCP
incidence induces highly confined local fields around the SRRs,
leading to high absorption. In contrast, LCP incidence is mostly
reflected with no obvious field concentration. The net effect is a
strongly negative CD value. On the contrary, the metamaterial
structure with a 128° rotation angle confines and thus absorbs
LCP light much more than RCP light, which results in a
strongly positive CD.

Figure 4. Forward prediction results (a) and numerical simulation results (b) of the chiral metamaterial when changing the rotation angle
from 0 to 180°. (c) CD value at the frequency of 72.25 THz when changing the rotation angle. (d) Normalized electrical field distribution in
top and bottom SRRs at the frequency of 72.25 THz for two different rotation angles.
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On-Demand Inverse Design of Chiral Metamaterials.
In addition to retrieving the geometric parameters from the full
reflection spectra, a practical inverse design scheme should also
work when only a few requirements of chiral performance are
provided. Such a function is highly desired if we intend to
employ chiral metamaterials in sensing, imaging, and photo-
detection applications,11,44,49−51 whereas the chiral response is
only specified by a few figures of merit. In a CD spectrum, we
can use resonant frequency ω0, bandwidth Δ, and amplitude A
to define one single resonant feature approximated by a Lorentz
line shape. The complete CD response is given by summing up
all resonances, as described below:

∑
ω ω

=
+ − Δ

A
CD

1 [( )/( /2)]i
i

i i0,
2

(2)

The red solid curves in Figure 5a,c plot CD spectra with
desired features defined by eq 2, which merely specify the
location, intensity, and bandwidth of the resonances. Figure 5a
shows a single CD resonance with A = −0.7, ω0 = 60 THz, and
Δ = 4 THz, whereas Figure 5c represents the case of dual CD
resonances with A1 = 0.6, ω0,1 = 42 THz, Δ1 = 3 THz, A2 =
−0.6, ω0,2 = 66 THz, and Δ2 = 3 THz. As long as the prescribed
requirements in the CD spectra are realizable for the
metamaterial structure based on twisted SRRs, the proposed

Figure 5. Inverse design using the proposed deep learning model. (a,c) Desired, predicted, and simulated CD spectra. The insets list the
retrieved geometric parameters. (b,d) Predicted full reflection spectra along with the full-wave simulation results.

Figure 6. Evolution of CD at 60 THz by varying the size of top and bottom SRRs at selected rotation angles. The white contour lines in the
plot correspond to the CD of 0.5 or −0.5.

ACS Nano Article

DOI: 10.1021/acsnano.8b03569
ACS Nano 2018, 12, 6326−6334

6331

http://dx.doi.org/10.1021/acsnano.8b03569


deep-learning model can retrieve the geometric parameters
(insets in Figure 5a,c) that best approximate the requirements.
The retrieved geometric parameters from AN pass through the
entire deep-learning model, exporting the predicted CD spectra
and full reflection spectra (Figure 5b,d) at the same time. The
overall good agreement among the desired spectra, prediction,
and full-wave simulation results manifests that the model can
indeed solve the design-on-demand inverse problem accurately
and efficiently.
Interestingly from Figure 5a, we notice that the retrieved

rotation angle is as large as 172° for a strong CD resonance at
60 THz. Because a metamaterial with mirror symmetry has no
chiroptical response,21 a natural logic is that a high degree of
geometric chirality will yield strong optical chirality, as the case
shown in Figure 4, where CD resonance happens at two
rotation angles near 90°. However, this intuition is not always
correct as Figure 5a implies. To further explore the dependence
of chiral response on the rotation angle, we choose to fix the
thickness of the two spacer layers both at 400 nm and the
frequency of interest at 60 THz. The density plot in Figure 6
shows the CD obtained from the DL model at different
rotation angles when changing the size of top and bottom
SRRs. We observe a fairly complementary CD distribution at
two supplementary angles (i.e., 10 and 170°, 30 and 150°, as
well as 60 and 120°). Notably, when top SRR size and bottom
SRR size are around 1500 and 1050 nm, respectively, the
metamaterial exhibits very strong CD at rotation angles near 0
and 180° that correspond to the mirror symmetry in our
structure. This result arises from the highly nonlinear
relationship between geometric chirality and chiroptical
responses. Equipped with the deep-learning model, we can
conveniently and efficiently search the entire design space
based on the prescribed requirements to uncover the complex
evolution of chiral response as the geometric parameters
change. The model can precisely predict the design with drastic
change in chiral response when mirror symmetry is slightly
broken. This counterintuitive result is more clearly demon-
strated in Figure S1a, where the CD is plotted as a function of
rotation angle (see Supporting Information for details).

CONCLUSIONS

To conclude, we propose a purpose-designed deep-learning
model to comprehensively study chiral metamaterials. The
model has a two-level architecture and is trained heuristically
with multiple functions of fast prototyping, optimization, and
inverse design. On one hand, this model circumvents the
computational burden required to numerically solve the
differential equations that governs the underlying physics of
chirality, basically shifting the methodology from the rule-based
approach to data-driven approach. On the other hand, the
model allows one to retrieve geometric parameters of the
metamaterial from specific requirements on its optical
responses, solving the inverse problem that even has no
universally applicable solutions. The high efficiency and
accuracy of the model make it a promising candidate in the
research field of nanophotonics, where the complex light−
matter interaction is often a barrier to model straightforwardly
based on physical laws. More prominently, the proposed
method could be readily extended to other research domains of
optics and materials science, enabling on-demand designs and
analyses with a broad range of applications such as sensing,
imaging, and optical communications.

METHODS
Numerical simulation package CST Microwave Studio is employed to
generate the reflection spectra data by Monte Carlo sampling of the
five design parameters uniformly distributed within certain ranges. The
reflection spectra of interest are set in the mid-infrared region from 30
to 80 THz and discretized into 201 data points with a step of 0.25
THz. In the simulation, the spacer is modeled as a lossless dielectric
with permittivity of 2, and gold is treated by the Drude model.52 With
the above parametrization, the design of the chiral metamaterial can be
converted into a multivariable regression problem, aiming to link the 1
× 5 design vector with 3 × 201 reflection matrix. From the numerical
simulations, we have collected 30000 samples and used 25000 of them
for training and the remaining 5000 for testing. The model is
constructed under the open-source machine learning framework of
TensorFlow.
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