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ABSTRACT: Deep artificial neural networks are powerful tools
with many possible applications in nanophotonics. Here, we
demonstrate how a deep neural network can be used as a fast,
general purpose predictor of the full near-field and far-field response
of plasmonic and dielectric nanostructures. A trained neural network
is shown to infer the internal fields of arbitrary three-dimensional
nanostructures many orders of magnitude faster compared to
conventional numerical simulations. Secondary physical quantities
are derived from the deep learning predictions and faithfully
reproduce a wide variety of physical effects without requiring specific
training. We discuss the strengths and limitations of the neural
network approach using a number of model studies of single
particles and their near-field interactions. Our approach paves the way for fast, yet universal, methods for design and analysis of
nanophotonic systems.
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Dielectric and metallic nanostructures of subwavelength
size can be designed such that their interaction with light

differs significantly from bulk materials. Nanophotonics aims to
exploit optical resonances and strong localized fields that can
be designed by nanoparticle geometry and material choices.1−4

The unique nanoscale properties can be used in applications
such as plasmonic nanoantennas for near-field energy
concentration and meta-surfaces for directing and controlling
light. More complex optical behavior can be designed such as
polarization conversion,5 chirality,6 localized heat generation,7

or nonlinear optical effects.8−10

The interaction of light with many types of nanostructures
can be modeled accurately by solving the classical Maxwell’s
equations,11 for which many commercial and open source
methods are available. However, numerical nanophotonic
simulations are often time-consuming and can take hours or
even days for complex systems.12 Many subsequent simulations
are needed for iterative optimization methods such as the
rational design of nanosystems by topology optimization and
inverse design.13−16 Fast evaluation of optical properties is
highly desirable also for example in real-time sensors based on
3D molecular nanorulers,17,18 or in the active control of smart
and reconfigurable nanomaterials.19,20

Methods of artificial intelligence, and in particular deep
learning,21,22 are powerful tools with potentially groundbreak-
ing relevance for nano-optics. First captivating applications
have been reported in experimental photonics and nano-optics.
Examples are the possibility of phase recovery in conventional

microscopy,23 stabilization of lasers,24 and a large variety of
applications in data analysis and interpretation.25−33 For
forward modeling, early work has shown that artificial neural
networks (ANNs) can be used as approximate predictors for
light−matter interaction phenomena or optical scattering at
nanostructures. Examples are strong-field ionization of
potassium atoms,34 SHG of a specific fluorescent molecule,35

the optical transmittance of “H”-shaped particles36 or the
scattering cross-sections of multilayer spheres.37 All of those
reported ANN techniques apply to single, very specific
problems and for a particular nanostructure geometry.
Furthermore, deep artificial neural networks are highly

promising to approach notoriously difficult inverse problems in
nano-optics, like the design of meta-surfaces or the tailoring of
optical properties of individual nanostructures. Even though no
generalized and fast inverse design method has as yet been
reported, rapid progress has been made in this direction over
the last two years.13,36−43 The overall trend in these studies so
far is that, for every specific inverse problem using a particular
geometric model, a neural network needs to be designed in a
time demanding and computationally very expensive process,
involving hyperparameter optimization, training data gener-
ation, training, and extensive testing.
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Here, we present a general approach to nano-optical
modeling which is distinct from all previous works by its
capability for fast and accurate modeling of generalized nano-
optical effects in a variety of nanostructures. Requiring only a
single training procedure, our concept fully generalizes ANNs
for nanophotonic simulations and allows the tremendous
acceleration of predictions for countless problems in nano-
optics. We demonstrate that the generalized network captures
a range of complex nano-optical near- and far-field effects in
nanostructures, such as higher-order antenna resonances,
electric and magnetic dipole modes, nonradiating anapole
states, or Kerker-type directional scattering, without the need
of any specific training for these effects. Our approach is based
on a three-dimensional, fully convolutional neural network
(CNN), trained on predicting a coupled dipole representation
of the fields inside nanostructures of arbitrary shape. These
predictions can be used subsequently to reconstruct many
secondary physical quantities with uncertainties as low as few
percent.
An overview of the model description is shown in Figure 1.

The aim of our work is to develop an ANN capable of
predicting the time-harmonic electric polarization density

inside nanostructures of arbitrary shape. For our demon-
stration we use a geometric model consisting of a rectangular
grid of positions, as illustrated by the example of Figure 1a, left
panel. Nanostructures are mapped onto the 3D grid using a
standard volume discretization approach. The resulting
geometry can be directly evaluated with numerical simulations
using the coupled dipole approximation (CDA). Upon normal
incidence plane wave illumination (k along −Z) and linear
polarization along X, we numerically calculate the field at every
mesh cell inside the nanostructure via the Green Dyadic
Method (GDM),44 for which we use a home-built python
implementation “pyGDM”.45 A short summary of the GDM
formalism can be found in Section I of the Supporting
Information. The model includes a dielectric substrate (nsubst =
1.45). While in principle any simulation method can be used to
generate the network training data, we use the GDM for its
simplicity and its good convergence in the case of small
nanostructures as well as for the fact that the results are by
design available on the required cubic discretization grid.
The conceptual beauty of the CDA method lies in the initial

assumption that every meshpoint can be approximated by a
dipolar polarizability, which allows the treatment of every cell

Figure 1. (a) Sketch of the proposed neural network model for the example of the silicon nanostructure model. The volume discretization of the
three-dimensional geometry (left, area of 45 × 45 × 10 meshpoints with 20 nm step, fixed height of 200 nm) is fed into the neural network. The
three-dimensional convolutional network follows an encoder−decoder architecture and is organized in a sequence of residual blocks. The principal
layout of these blocks, the number of kernels, as well as the layer dimensions of the silicon predictor are shown in the sketch of the network. The six
output channels of the network contain the real and imaginary parts of the x, y, and z components of the complex electric field inside the
nanostructure. For more details see Section III of the Supporting Information. Following the calculation of the self-consistent electric polarization
inside the structure, the latter can be interpreted as dipole moments p(ri) of the single mesh cells at ri. (b) Various physical quantities in the near
field and far field, as illustrated, can be derived from p(ri). This includes the electric or magnetic near-field (c), the Poynting vector (d), or far-field
scattering patterns (e) among many others (f). The model includes a dielectric substrate (nsubst = 1.45). The structure is illuminated by a linearly
polarized plane wave from the top with λ0 = 700 nm.
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inside the nanostructure as an oscillating dipole moment. In
consequence, various physical quantities in the near-field as
well as in the far-field region can be derived from the internal
fields of a CDA simulation. Figure 1b illustrates a few of the
possible observables that can be calculated from the dipole
discretization. Using according Green’s dyads, the optical
electric and magnetic fields (and in consequence the Poynting
vector) can be obtained at any location outside the
nanostructure (see Figure 1c,d).45 Extinction, scattering or
absorption cross-sections can be calculated almost effortlessly,1

as well as the polarization state and spatial patterns of the
scattering (Figure 1e),5,46 the dissipated heat or local
temperature gradients,7,47 nonlinear effects like second or
third harmonic generation and multiphoton lumines-
cence,10,48,49 or the multipole decomposition of the optical
response.2 In consequence, an ANN capable to accurately
predict the internal electric fields of a photonic nanostructure
represents a generalized, phenomenological model of light−
matter interaction, with tremendous potentials for rapid nano-
optical simulations.
A 3D grid of positions is used as input layer to the network

which is illustrated in Figure 1a, middle panel. The network
used in this study is a three-dimensional symmetric, fully
convolutional network with “U-Net”-type shortcut connections
between corresponding convolutional and up-sampling units.
This type of ANN is known to be particularly strong at the
reconstruction of spatial information.50 Shortcuts were found
to be essential for our purpose to obtain good approximations
of the internal fields. In addition to the U-Net design, we
organize the network in residual blocks51,52 which allows us to
maintain good learning performance on a very deep

architecture with as many as 91 layers including 33 three-
dimensional convolutional operations. All network details and
hyperparameters are given in Section III of the Supporting
Information.
The output of the network is composed of 6 layers of the

same size as the input grid, which correspond to the real and
imaginary parts of Ex, Ey, and Ez. We use complex amplitudes
for the fields, so phase information and retardation effects are
included in the neural network predictions. An illustration of
real part field vectors is shown in Figure 1a, right panel.
For the network training, we simulate the internal fields of

30 000 random nanostructures. We test the network on two
data sets; the first contains planar gold nanostructures (15 nm
height) of random polygonal shapes. The second set is
composed of silicon pillar structures (200 nm height),
consisting of one or more arranged cuboidal blocks. Details
about the geometric models are given in Section II of the
Supporting Information. For convenience we use fixed height
structures throughout this demonstration, but we want to
emphasize that this is not an inherent limitation of the
approach. On the contrary, variable height structures can be
modeled without any further modifications and without
significant loss of accuracy, as shown in the Supporting
Information, Figure S9. We fix the illumination conditions to
normal incidence plane wave excitation at a wavelength of λ0 =
700 nm with linear polarization along X. In consequence, the
neural network is limited to predictions under the conditions
chosen for the training data generation. Hence, in our
approach a separate ANN needs to be trained if the structure
model or material is modified and also for every illumination
configuration, e.g., for every angle of an oblique incidence

Figure 2. Internal field prediction of polygonal, planar gold nanostructures. (a) Top: sketch of the simulated planar gold structure. Discretization
with a step of 15 nm on an area of 76 × 76 positions with a height of a single layer of mesh cells. The polygonal structure lies on a dielectric
substrate (nsubst = 1.45) and is illuminated by a linearly polarized plane wave from the top with λ0 = 700 nm. On the bottom, the real (top row) and
imaginary (bottom row) parts of the Ex (two left columns) and Ey (two right columns) amplitude of the internal electric field are shown for ANN
prediction and simulation. The linear and symmetric color scales are pairwise normalized between ANN and simulation for each field component.
More examples can be found in the SI, Figure S4. (b) Comparison of the electric field intensity 30 nm above rectangular gold antennas, calculated
using the ANN predicted internal fields (left subplots) and by numerical simulations (right subplots). The color map is on a symmetric, logarithmic
scale; white corresponds to |E|2 = |E0|2. (c) Electric field intensity above the center of a nanorod of W = 75 nm as a function of the rod length
(position indicated by white marker in the top right near-field color plot). Solid line, calculated using the ANN; dashed line, numerical simulation.
(d) Scattering cross-section (SCS) from ANN (solid lines) and GDM simulation (dashed lines) as a function of rod length for an incident plane
wave polarized either along Y (TE, blue) or along X (TM, orange). Scale bars in parts a and b are 400 nm.
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illumination. We note that, under normal incidence, any linear
polarization angle can be achieved by a rotation of the
nanostructure. Fully arbitrary polarization states of the
illumination can furthermore be obtained via superposition
of perpendicular linear polarizations, as demonstrated in the
Supporting Information, Figure S7, for left circular polar-
ization.
In both cases of plasmonic and dielectric structures we use

28 000 samples for training and the remaining 2000 structures
for validation and benchmarking. On an NVIDIA P6000 GPU,
the training with the gold (silicon) data set takes around 2
(10) minutes per epoch. We stop training after 100 epochs;

longer training leads to no further improvement in validation
accuracy (see Figure S10 in the Supporting Information). On
the same GPU, the trained network delivers its prediction in
around 3 ms for a planar gold structure and 6 ms for a silicon
structure. On a third generation Intel i7 quad-core CPU (i7-
3770) the predictions for the gold and silicon structures,
respectively, take around 53 and 250 ms. Depending on the
chosen hardware platform, this is 3−5 orders of magnitude
faster than the conventional simulations, which take seconds to
minutes on the Intel i7 CPU. The simulation time for the full
data sets, running in parallel on two workstations, was
approximately 10 days. We note that since the simulations

Figure 3. Reproducibility of complex nano-optical effects by the ANN predictor. (a) Internal electric energy and (b) scattering cross-section of a
200 nm wide nanorod as a function of its length under TE polarized illumination (Ein along the nanorod width). (c) Averaged, XY projected
internal field intensity and electric field vectors (real part, red arrows) at the anapole-type state in a Si block of dimensions 240 × 200 × 200 nm3.
Contributions to the extinction coefficient of the electric dipole (d) and the magnetic dipole moment (e) in a silicon nanorod as a function of its
length. Top and bottom panels: nanorods excited under TE (E along width) and TM (E along length) polarizations, respectively. Left and right
columns: network prediction and according numerical simulation, which are pairwise normalized to identical color scales. 3D illustrations of the
internal electric field (real part) are shown for ANN and simulations at selected parameters. (f) Internal fields and scattering radiation pattern for
(i) Kerker-type forward scattering due to simultaneous excitation of similarly strong electric dipole (ED) and magnetic dipole (MD) modes for a
cuboid of side length L = 100 nm (height H = 200 nm). (ii) Same for a larger cube: the MD dominates the optical response, and hence,
bidirectional scattering is observed (L = 160 nm, H = 200 nm). (g) Forward/backward resolved scattering for a nanorod as a function of its length
under (i) TE and (ii) TM polarized plane wave illumination. Top: ANN predicted and simulated internal electric field shown for the forward
scattering condition at the magnetic quadrupole mode.
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are entirely independent, the data generation is a so-called
“embarrassingly parallel” task that can be parallelized to any
extent. The GDM simulations can potentially be accelerated by
GPUs, but according to the literature, less than 1 order of
magnitude speed-up is expected for GPU-based LU decom-
position.53

While a more formal benchmarking of the ANN is discussed
further below, we start our results by demonstrating the ability
of the network to capture some of the well-known physical
effects in metallic and dielectric nanostructures. The ANN’s
capability to generalize to these arbitrary situations is tested by
constructing a number of specific cases at which optical effects
occur and compare the predictions of the neural network to
numerical simulations. Figure 2a shows the ANN predicted
real and imaginary part of the amplitude of the internal field
components Ex and Ey upon X polarized plane wave
illumination of the planar gold nanopolygon.54,55 Clearly, the
neural network correctly predicts the form and distribution of
fields as given by the CDA simulation. In addition to arbitrary
objects, the ANN shows a good systematic scaling of antenna
behavior, as illustrated in Figure 2b where we plot the
magnitude of the electric field intensity for gold nanorod
antennas of 75 nm width and lengths ranging from a point
dipole, to half-wave and multiorder antenna resonances. In
Figure 2c, the electric field intensity on top of the center of the
nanorod is shown as a function of the rod length. The neural
network is able to make an accurate prediction of the mode
structure and effective scaling of plasmonic nanoantennas
within the domain under study in a generalized, phenomeno-
logical model of light−matter interaction.56 We note that the
peak field enhancement at resonance is consistently under-
estimated by the ANN. We believe this is due to the random
generation process of the training data, which therefore
includes only very few structures that exactly hit a resonance
condition.
In Figure 2d we finally show the scattering cross-section

(SCS) of a gold rod antenna as a function of its length for
perpendicular incident polarizations TE (incident field
polarized perpendicular to the rod long axis) and TM (field
along the rod axis). Again the neural network reliably predicts
the resonance positions. Interestingly, apart from the dipole
antenna resonance where the underestimated near field is
reflected also in the SCS, prediction and scattering
quantitatively match better for longer rod antennas. This is a
result of the weak coupling to the far field of higher-order
modes; hence, the underestimation of the near-field strength
has no great impact on the far-field scattering in these cases.
Next to plasmonic nanoparticles and antennas, recently

dielectric nanostructures have received tremendous interest for
use in meta-surfaces and low-absorption antennas.57,58 Here,
we evaluate the performance of the ANN in inferring the
response of silicon nanorods with a fixed height of 200 nm and
varying lengths and widths. Figure 3a,b shows the internal
electric field energy (a) and scattering cross-section (b) for a
silicon nanorod with a square cross-section of 200 × 200 nm2,
plotted against rod length. The incident plane wave is linearly
polarized along the width of the rod (transverse electric, TE).
In this data set we observe the typical signature of an “anapole”
mode for a length indicated by a dashed vertical line, at which
a superposition of the toroidal and electric dipole mode is
excited.59 The anapole mode is characterized by a minimum in
the scattering cross-section accompanied by a maximum of the
electric field energy inside the structure.60 Both signatures are

reproduced by the ANN (solid lines) in excellent agreement
with the numerical simulations (dashed lines). The corre-
sponding field profile predicted by the ANN is shown in Figure
3c and reproduces the characteristic internal field distribution
of the anapole.
The response of the silicon nanorods for polarizations along

the width (TE) and along the length (TM) of the nanorod is
further investigated in a parameter study where we
independently tuned the length and width of the structure.
Figure 3d,e shows the electric and magnetic dipole
contributions to the nanorod extinctions. The two separate
contributions were extracted from the total solution through a
Taylor-like expansion of the electric polarization.2 The neural
network predictions (left subplots) agree very well with the
numerical simulations (right subplots) in both the positions
and amplitudes of the different magnetoelectric modes in the
structure. Also shown are 3D quiver plots of the internal field
distributions at selected parameters, which show that the
underlying field distributions inferred by the network match
very well the simulated ones.
Precise tuning of the nanostructure geometry allows the

acquisition of specific conditions of unidirectional “Kerker-
type” light scattering due to the simultaneous excitation of
electric dipole (ED) and magnetic dipole (MD) modes of
similar magnitude.46,61,62 For the fixed structure height of 200
nm and illumination wavelength used in our predictor network
(λ0 = 700 nm), we find that ED and MD modes are
simultaneously excited for a square cuboid with side length L =
100 nm. Figure 3f shows a 3D quiver plot (i) where the MD
can be observed in the upper part of the 3D electric field
distribution (vortex formed by the field vectors), whereas the
ED is situated at the bottom of the silicon block (field vectors
parallel to the substrate plane). The superposition of both
contributions leads to a strongly directional scattering pattern
(see center plot). Panel ii shows the effect when the block size
is increased to L = 160 nm. Here, the MD becomes the
predominantly excited mode, leading to a bidirectional
scattering, as expected for a dipolar source of radiation. Both
internal 3D field plots as well as the far-field scattering patterns
show very good agreement between ANN and simulation.
Generally the ratio of forward to backward total scattering is of
interest in dielectric structures as it shows large variations with
particle geometry. Figure 3g shows the forward/backward ratio
for a silicon nanorod of 100 nm width and with increasing
length for (i) TE and (ii) TM polarized illumination. The
scattering from the nanorods was integrated over the respective
full half hemisphere to obtain the total scattering intensity.
Overall, the ANN predicts accurately the directional character
of the scattering in all cases. The position of the quadrupole
magnetic mode is indicated by the vertical line; even the quite
complex electric field distributions at this position are correctly
predicted by the network. For longer rods (≳400 nm), the
accuracy of the ANN deteriorates slightly; the network tends
to overestimate scattering and extinction cross-sections (see
Figure 3d,e,g). We assume that this is due to the maximum
length and width of 300 nm used for the silicon blocks in the
training data. Considering this constraint on the training
process, the network manages to generalize impressively well
to larger individual nanostructures. In summary, our
generalized predictor neural network manages to accurately
predict various nano-optical phenomena in the near field as
well as in the far field, without having been specifically trained
on those effects.
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Next to the response of individual structures, it is critically
important that the ANN can capture the mutual interactions
between isolated nanostructures. Figure 4 explores the near-
field coupling for a silicon dimer structure. Results for gold
nanodimers are shown in the Supporting Information, Figure
S6. The scaling of near-field coupling between the structures
was studied by varying the interparticle gap as illustrated in
Figure 4a. The effect of near-field coupling is clearly visible in
the quiver plots in Figure 4b. Visually the network predictions
can barely be distinguished from the numerical simulations.
Quantitative agreement is also obtained for the scaling of the
near-field in the center of the gap (indicated by a red cross in
Figure 4a). The field enhancement derived via ANN is
compared in Figure 4c (solid lines) to numerical simulations
(dashed lines), yielding indeed an excellent agreement, apart
from a slight overestimation of the field intensity.
In order to assess the impact of optical coupling between the

two silicon blocks, we artificially turn off near-field interactions
in the simulations (orange lines). This is done by calculating
the optical response of both blocks separately, and using the
internal dipole moments of those isolated simulations
(respectively, isolated ANN predictions) to derive the field
intensity in the gap. We find that near-field interactions
become non-negligible only for small distances ≲100 nm,
which is correctly described also by the predictor network.
This observation is in agreement with experimental results of

cathodoluminescence imaging of hybridized mode field profiles
in silicon dimers.63

In Figure 4d, we furthermore study the optical chirality C of
the near-field in the center of the gap, 30 nm above the
nanostructure’s top surface. C is a measure of the selectivity at
which opposite handed chiral molecules interact with the
electromagnetic field.64,65 We plot C normalized to the
chirality of a left circular polarized plane wave CLCP. As
expected, in the symmetric configuration the field has no
chirality. It is however possible to break the symmetry of the
dimer by shifting one of the blocks vertically by a distance ΔY,
as illustrated in Figure 4e. The internal fields are shown in top-
view quiver plots in Figure 4f and provide evidence that the
neural network correctly predicts near-field coupling effects in
the asymmetric dimer. The electric field vectors inside the
silicon strongly vary dependent on the relative positions of the
two blocks. The optical chirality as a function of the vertical
shift is shown in Figure 4g for three different gap sizes.
Chirality is induced through asymmetry in the dimer geometry,
which is again correctly reflected in the ANN predictions.
Interestingly, the electromagnetic field above the gap features
almost no chirality if the near-field interactions are deactivated
in the simulations. Hence, the electromagnetic chirality is
driven here by optical coupling between the two silicon blocks.
This is confirmed by the decreasing magnitude of C for
increasing gap widths (from top to bottom in Figure 4g),

Figure 4. Reproducibility of near-field enhancement and optical chirality of a silicon dimer. (a) Sketch of a symmetric dimer built of two identical
silicon cuboids (120 × 200 × 200 nm3). (b) Top view of the electric field vectors inside the nanostructure upon X polarized plane wave
illumination from above for different gaps sizes. Left column, numerical simulation; right column, ANN prediction. (c) Field enhancement in the
center of the gap (red cross in part a), calculated from the ANN prediction (solid lines) or with numerical simulations (dashed lines). (d) Optical
chirality C at 30 nm above the gap center (red cross in part e), normalized to the chirality CLCP of a left-circular polarized plane wave. (e) Sketch of
asymmetric silicon dimer. One constituent is vertically shifted by a distance ΔY relative to the other. (f) Same as part b for the asymmetric dimer
and different relative positions ΔY. (g) Optical chirality C, normalized to CLCP, calculated 30 nm above the middle of the gap, vertically centered at
the left silicon block (red cross in part e). Full field simulations (blue lines) are compared to calculations in which optical interactions have been
artificially turned off (orange lines; the see text). All data were taken for a normally incident plane wave (k along −Z, λ0 = 700 nm), with linear
polarization along OX. A video featuring the animated oscillating fields in the nanodimer obtained from ANN and numerical simulations is available
in the Supporting Information.
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which is also in agreement with recent experimental results.66

In contrast, for plasmonic dimers, it is found that near-field
coupling suppresses the chirality (Supporting Information,
Figure S6).65

The above results reveal the capacity of the neural network
in inferring many of the important physical effects in the
interaction of light with nanostructures. While the simple
model examples provide insight, a more formal assessment of
the ANN performance is needed. Figure 5 shows results of the
statistical data analysis of the entire validation set for the
plasmonic (a−c) and silicon (d−f) models, each consisting of
2000 random structures which were not used for training. In
Figure 5a,d the statistics for the normalized cross correlation
between simulated and predicted field intensity distributions
are shown for the far field, the near field in the vicinity, and the
internal field inside the structure. Considering that a cross
correlation of 0.8 indicates already a good qualitative
agreement, the network predictions are mostly excellent;
however, for a non-negligible number of “outliers”, the ANN
results are significantly worse.
The same trends can be found in a quantitative analysis of

the far-field cross-sections, the peak internal field intensity
(Figure 5b,e), and the polarization state (Figure 5c,f). So while
the network predictions are mostly very good, being a data-
driven approach, an inevitable error of a few percent is
inherent to the method. Also, the ANN bears some risk of
getting a result with significant error. The risk of a failed
prediction is of the order of around 5%, as expressed by the
amount of outliers in Figure 5. Examples of outliers in the
validation data are shown in Figures S4 and S5 of the
Supporting Information. In our simple examples we have also
seen some reduction in ANN performance around resonant
poles in the polarizability and for larger sized structures in
Figure 2. The statistical evaluation indicates that the plasmonic
predictor network performs generally worse than the ANN

trained on silicon cuboidal structures. The induced plasmonic
currents cause strong depolarization effects on short length-
scales, which are strongly dependent on the structure
geometry. We therefore speculate that this complex and
feature-rich plasmonic optical response is more difficult to
predict, compared to dielectric nanostructures. This lack of
perfection is the general property of neural networks, and new
methods gauging the reliability of solutions have been
proposed using, for example, multiple, independently trained
ANNs.67 Additionally, while ANNs are good at interpolating
complex functions from few data, their performance is reduced
when extrapolating outside of the known parameter space.68

Despite these limitations, our results clearly show that the
ANN’s capabilities go far beyond that of a simple fit function,
as it is able to apply trained behavior to new highly nontrivial
configurations (see also the Supporting Information, Figure S8,
on the prediction of curved structures). The ANN yields a
generalized and powerful capability for generating field
distributions from structural arrangements.
Improved performance of the ANN in specific ranges may

be achieved by further extending the training data set. In our
current demonstration we chose to limit ourselves to planar
configurations and single materials. However, the method
could be further generalized to arbitrary hybrid-material
structures using the three-dimensional distribution of the
dielectric constant as input. Periodic structures can be treated
using training data describing one unit-cell of the periodic
structure.69,70 In addition, the approach can be extended to
spectrally resolved predictions using multiple output layers.
Spectral training might be accelerated by transfer learning.
Generalized predictor networks can be potentially used
together with evolutionary optimization schemes for fast,
universal nanophotonic inverse design, overcoming the need of
designing a specific inverse network for every target problem
and nanostructure model.71

Figure 5. Statistics on comparison between the ANN predictions and GDM simulations for the planar gold model (a−c) and the silicon model (d−
f) on the validation data (not used for training). Qualitative comparison of field intensity distribution, in the far field (comparing the back focal
plane mappings), in the near-field in a plane 45 nm (a) and 100 nm (d), respectively, above the structure top surface, and inside the structure. (b,
e) Relative error of the ANN (in %) for the scattering cross-section, the extinction cross-section, and the maximum value of near-field intensity. (c,
f) Absolute deviation in the far-field polarization angle. All data points outside of 1.5 times the interquartile range are considered outliers and are
individually plotted as cross symbols. Red numbers indicate the median values, and in the case of parts c and f additionally the lower and upper
quartiles. Specific examples of nanostructures from the validation sed and the calculated physical observables are shown in the SI, Section IV.
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In conclusion, we presented an approach combining the
coupled dipole approximation with deep artificial neural
networks, which is capable to accelerate universal electro-
dynamical simulations of arbitrary 3D nanostructures by many
orders of magnitude. Our generalized predictor network needs
to be trained only once using a volume discretization of the
three-dimensional electric polarization inside nanostructures of
arbitrary shape. Being a data-driven approach, the method
comes necessarily with a loss of accuracy. Despite this inherent
shortcoming, we could demonstrate that the network
predictions imply only a small error in the order of around
five percent. On the other hand, the prediction of the internal
fields allows the derivation of manifold quantities and effects in
the near-field as well as in the far-field region. We have shown
that both regions are covered by the predictor with very good
accuracy. We demonstrated furthermore that the network
developed a generalized intuition about Maxwell’s equations,
being capable to reproduce complex nano-optical effects
occurring in plasmonic and dielectric nanostructures. The
ANN faithfully reproduces phenomena like higher-order
localized plasmon modes, magnetic and electric dipole
modes, nonradiating anapole states, Kerker-type directional
scattering, or optical chirality. We demonstrated that the
network also developed an understanding of near-field
interactions between separated nanostructures. We foresee
that ultrarapid generalized predictor networks bare tremendous
potential for applications in nanophotonics.
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