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Parallel convolutional processing using an 
integrated photonic tensor core

J. Feldmann1,8, N. Youngblood2,7,8, M. Karpov3,8, H. Gehring1, X. Li2, M. Stappers1, M. Le Gallo4, 
X. Fu3, A. Lukashchuk3, A. S. Raja3, J. Liu3, C. D. Wright5, A. Sebastian4 ✉, T. J. Kippenberg3 ✉, 
W. H. P. Pernice1,6 ✉ & H. Bhaskaran2 ✉

With the proliferation of ultrahigh-speed mobile networks and internet-connected 
devices, along with the rise of artificial intelligence (AI)1, the world is generating 
exponentially increasing amounts of data that need to be processed in a fast and 
efficient way. Highly parallelized, fast and scalable hardware is therefore becoming 
progressively more important2. Here we demonstrate a computationally specific 
integrated photonic hardware accelerator (tensor core) that is capable of operating at 
speeds of trillions of multiply-accumulate operations per second (1012 MAC 
operations per second or tera-MACs per second). The tensor core can be considered 
as the optical analogue of an application-specific integrated circuit (ASIC). It achieves 
parallelized photonic in-memory computing using phase-change-material memory 
arrays and photonic chip-based optical frequency combs (soliton microcombs3). The 
computation is reduced to measuring the optical transmission of reconfigurable and 
non-resonant passive components and can operate at a bandwidth exceeding 14 
gigahertz, limited only by the speed of the modulators and photodetectors. Given 
recent advances in hybrid integration of soliton microcombs at microwave line 
rates3–5, ultralow-loss silicon nitride waveguides6,7, and high-speed on-chip detectors 
and modulators, our approach provides a path towards full complementary metal–
oxide–semiconductor (CMOS) wafer-scale integration of the photonic tensor core. 
Although we focus on convolutional processing, more generally our results indicate 
the potential of integrated photonics for parallel, fast, and efficient computational 
hardware in data-heavy AI applications such as autonomous driving, live video 
processing, and next-generation cloud computing services.

The increased demand for machine learning on very large datasets2 
and the growing offering of AI services on the cloud8,9 has driven a 
resurgence in custom hardware designed to accelerate MAC com-
putations—the fundamental mathematical element needed for 
matrix-vector multiplication (MVM) operations. Although various 
custom silicon computing hardware—that is, field-programmable gate 
arrays (FPGAs)10, ASICs11 and graphics processing units (GPUs)12—have 
been developed to improve computational throughput and efficiency, 
they still depend on the same underlying electronic components, which 
are fundamentally limited in both speed and energy by Joule heat-
ing, electromagnetic crosstalk and capacitance13. The last of these 
(capacitance) dominates energy consumption and limits the maximum 
operating speed in neural network hardware accelerators14. This is 
because, the movement of data (for example, trained network weights), 
rather than arithmetic operations, requires the charging and discharg-
ing of chip-level metal interconnects. Thus, improving the efficiency 
of logic gates at the device level provides diminutive returns in such 

applications, if the flow of data during computation is not simultane-
ously addressed15. Even recent developments such as memristive cross-
bar arrays16–19 to compute in the analogue domain, although promising, 
do not have the potential for parallelizing the MVM operations (except 
by physical replication of the elements of the matrix). Moreover, they 
are plagued by the same limitations of electronic addressing20, with 
additional challenges in the manufacturing and implementation due 
to issues with device variability21,22, cyclability23 and drift24,25.

Integrated photonics benefits from the modularity and scalable fab-
rication methods of integrated circuits, while having two key advan-
tages over its electronic counterparts: (1) massively parallel data transfer 
through wavelength division multiplexing (WDM) in conjunction 
with multichannel sources (that is, optical frequency combs); and (2) 
extremely high data modulation speeds limited only by the bandwidth 
of on-chip optical modulators and photodetectors. These uniquely pho-
tonic advantages have led to the ubiquity of optical networks for informa-
tion transfer and are at present revolutionizing data centre interconnects 
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(that is, server-to-switch communication). However, these developments 
have yet to seriously challenge digital electronics in the arena of informa-
tion processing. Despite the current dominance of integrated electronics 
for computing, an application-specific optical processor not limited 
by the energy-bandwidth trade-off of electrical interconnects13 could 

bring the advantages of optical networking to the field of computing. 
This would result in very high computational throughput via low-latency 
(that is, information processing and propagation at the speed of light) 
and parallel operations in a single physical optical processing core using 
WDM—essentially providing an additional scaling dimension through 
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Fig. 1 | Photonic in-memory computing using a photonic-chip-based 
microcomb and PCMs. a, A comparison of digital and analogue electronic 
architectures with our photonic tensor core architecture. Digital electronics 
(left) requires many sequential processing steps distributed across multiple 
cores to compute convolutional operations on an image, whereas an entire 
MVM can be performed in one step using analogue electronic in-memory 
computing (centre). Photonic in-memory computing (right) brings  
wavelength multiplexing as an additional degree of freedom, enabling  
multiple MVM operations in a single time step. Photograph of car taken by 
author. b, Conceptual illustration of a fully integrated photonic architecture to 
compute convolutional operations. An on-chip laser (not used here) pumps an 

integrated Si3N4 microresonator to generate a broadband soliton frequency 
comb. Individual comb teeth, which form the input vectors, are modulated at 
high speeds, multiplied with a matrix of non-volatile phase-change memory 
cells, and summed along each column on a photodetector. c, An input image 
(left) with din channels is convolved with dout kernels of size k × k by mapping 
convolution operations into a sequence of MVM operations. The input image is 
mapped to a series of (n − k + 1)2 input vectors of size (din × k2) × 1 (middle) and 
multiplied by a filter matrix of dimension (din × k2) × dout (right). Each comb line 
corresponds to one entry of the input vector and is modulated according to the 
pixel values of the input matrix.
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use of frequency space. Although the concept of free-space optics for 
efficient linear computing (for example, Fourier transforms, convolu-
tions, matrix multiplication and so on) has existed for many decades26 
and continues to inspire computing architectures27–30, precise control 
of the optical phase over the entire system remains the primary factor 
limiting scalability and commercialization of free space approaches.

Integrated photonics has the potential to solve these challenges. 
However, integration together with CMOS-compatible manufacturing 
is of paramount importance: on chip, both energy-efficient optical 
memory units and a compact, broadband multi-channel laser source 
must be combined within a scalable photonic architecture. Recent 

work on integrated photonic processors for MVMs and neuromorphic 
computing31–33 has revealed the potential advantages of the photonic 
approach, but key issues such as large footprints (11,000 μm2 per inter-
ferometer unit31) and the use of thermo-optic heaters to tune the phase 
or resonance wavelength of their components (ranging on average 
from 1 mW to 10 mW per heater for ring resonators and Mach–Zehnder 
interferometers, respectively) have been bottlenecks34, as have devices 
such as add-drop resonators that limit the modulation bandwidth. 
Additionally, although using WDM for processing multiple inputs 
simultaneously in the same physical hardware has been proposed35, 
it has not yet been demonstrated on-chip.
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Fig. 2 | Concept of photonic tensor cores for convolution operations.  
a, Basic MVM: a vector is encoded in the amplitude of individual comb teeth  
of a silicon nitride (Si3N4) photonic integrated soliton frequency comb 
(microcomb) exhibiting wavelengths (X1 to Xm) and sent to the corresponding 
matrix input waveguides. The matrix elements are inscribed in the state of  
PCM patches on the waveguides. The splitting ratios of the directional couplers 
are chosen such that the same fraction of the light for each input reaches the 
output. b, Optical micrograph of a high-Q Si3N4 photonic-chip-based 
microresonator used for frequency comb generation. c, Optical micrograph of 
a fabricated 16 × 16. The inset shows a 4 × 4 matrix with 3D-printed input and 
output couplers to enable broadband operation. The close-up SEM images on 
the right show the 3D-printed couplers (bottom) and the waveguide crossings 

with the PCM (top) in more detail. d, Sketch of the multiplexed all-optical MVM. 
The input vectors are generated from lines of a photonic chip-scale DKS 
frequency comb driven by a continuous-wave (CW) laser using wavelength 
division multiplexers (MUXs) and variable optical attenuators (VOAs). The 
entries of different input vectors are grouped together again employing 
wavelength multiplexing and sent to the on-chip MAC unit that performs the 
calculations. After combining the correct wavelengths with optical wavelength 
division demultiplexers (DEMUXs), the multiplication results are obtained 
from the photodetectors (PD) followed by digital signal processing (DSP) as 
described in the main text. Note that in the given example four kernels and four 
input vectors are operated at once, resulting in 64 MAC operations per time 
step. e, Measured spectrum of a single-soliton frequency comb.
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Here we design and experimentally demonstrate a scalable, 
CMOS-compatible, photonic hardware accelerator (which we term a 
‘photonic tensor core’ in the following) capable of many parallel MVM 
operations at optical data rates to process images using convolutional 
filters (here, edge detection and emboss filters) and test it on the MNIST 
database36 with a small-scale convolutional neural network (CNN). In 
a departure from electronic accelerators (see Fig. 1a), our photonic 
processor implements an on-chip matrix multiplication engine capable 
of performing parallel MAC operations using multiple wavelengths 
derived from a photonic chip-based optical frequency comb, which 
are incoherently added within a network of waveguides that exploit 
phase-change materials (PCMs). We leverage recent advances in 
chip-scale microcombs3,4 operating in the regime of dissipative Kerr 
soliton (DKS) states, which generate broadband, low-noise and fully 
integrated optical frequency combs. Advances in low-loss Si3N4 pho-
tonic circuits based on the photonic Damascene process6 have ena-
bled microcomb line spacing in the microwave range compatible with 
direct electronic detection and power levels compatible with on-chip 
lasers5,37,38. Microcombs have already been employed in system-level 
demonstrations such as massively parallel coherent communications39, 
optical frequency synthesizers40 and massively parallel light detection 
and ranging (LiDAR)41. Thus far, DKS systems have, however, remained 
unexplored for photonic computing.

Key to our approach is the encoding of image data onto the indi-
vidual comb teeth of an on-chip frequency comb, and subsequently 
encoding fixed convolutional kernels in the non-volatile configura-
tion (that is, the amorphous or crystalline phase) of integrated PCM 
cells that couple evanescently to a matrix of interconnected pho-
tonic waveguides (shown in Fig. 1b). Our approach minimizes both 
latency and the movement of data, by using non-volatile in-memory 
photonic MAC operations and greatly reduces the footprint cost of 
photonics by multiplexing computations in the same photonic core. 
Importantly, both the soliton microcombs and the matrix of photonic 
waveguides can be implemented in silicon nitride42, an ultralow-loss, 
CMOS-compatible nonlinear integrated photonic platform that is 

compatible with wafer-scale manufacturing and foundry. Combined 
with recent advances in both on-chip modulators and hybrid integra-
tion of soliton microcombs5,37, fully integrated custom photonic tensor 
cores are viable.

Parallel 2D convolutions via MVM operations
One prominent class of machine learning models that benefit in terms 
of performance (speed, energy consumption) from high-throughput 
accelerators are CNNs, which are highly effective for applications such 
as in-image classification, autonomous navigation and audio analysis 
in the frequency domain. In state-of-the-art CNNs, many convolutional 
‘hidden layers’ are applied to an input signal before feeding the pro-
cessed data to fully connected layers for classification43,44. Each of the 
convolutional layers takes in an input image, performs convolutional 
operations to extract features and generates an output image. When 
performing convolutional operations in the digital domain, a minimum 
of two clock cycles are required for each sequential MAC operation—
although the number of clock cycles for floating point multiplication 
usually exceeds three45. This leads to a substantial computational bot-
tleneck, requiring distribution across multiple computing cores, as 
illustrated in Fig. 1a.

To build efficient hardware to perform the convolutional operations, 
one approach (originally conceived for electronic in-memory comput-
ing using memristive crossbar arrays46,47) is to combine all the convo-
lutional filters into a large filter matrix stored in memory. As depicted 
in Fig. 1c, the filter matrix will be of dimension (k2 × din) × dout. It is con-
structed by stacking the kernel matrices into the columns of the final fil-
ter matrix. In the same way, the pixels of the input image are rearranged 
by stacking the pixels of the filter volume (k × k × din) into the rows of the 
input matrix. Hence, a single convolution operation involves (n − k + 1)2  
MVM operations between the filter matrix and the input vectors of 
dimension k2 × din. In the electronic domain, these MVM operations are 
typically multiplexed in time (serial processing) with parallelization 
afforded only by physically replicating the filter matrix. In this work, 

1

b c d ea

g h i

Original 

128 x 128  

0

Upper edge Left edge Right edge Bottom edge

0
–1 –1

1
0

–1

1 1
1 0
1 0

0
–1
–1

–1 1
10
10

0
–1
–1

–1

1
0 0

–1 –1

1
0

–1

1

0
–1 1
–2 –1

1
1
0

2 0
–1 1
–2 –1

1
1
0

2

f

Combined

Fig. 3 | Convolution using sequential MVM operations. a–e, Experimental 
result of convolving an image of 128 × 128 pixels showing a handwritten digit (a) 
with four image kernels of size 3 × 3 (corresponding to a 9 × 4 filter matrix). The 
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we exploit a photonic integrated soliton microcomb and optical WDM 
to overcome this fundamental limitation by encoding multiple input 
vectors of dimension k2 × din onto multiple lines of a coherent chip-scale 
frequency comb. These optical input vectors can then be applied to 
a single (k2 × din) × dout filter matrix simultaneously, thus eliminating 
duplicated physical hardware and sequential operations. This approach 
will be employed when designing the photonic tensor core.

The photonic tensor core
First, we demonstrate how to perform an MVM operation in the optical 
domain using photonic integrated circuits employing non-volatile PCM 
cells that store analogue values of the matrix in situ48. Details of using 
PCMs on single devices are described elsewhere48,49. In this work, the 
PCM (Ge2Sb2Te5) cells are employed as attenuating matrix elements that 
absorb a desired amount of light depending on their particular phase 
configuration. In the crystalline PCM state, most of the incoming light 
is absorbed, representing for example a ‘0’. In the amorphous state, 
most of the light is transmitted, thus representing a ‘1’. Intermediate 
transmission states can be chosen by controllably switching fractions 
of amorphous and crystalline parts in the PCM cell48,50. To achieve both 
positive and negative matrix elements, we define ‘0’ as an intermediate 
state between the crystalline and amorphous states, as described in 
the Supplementary Information.

To calculate the m × n MVM operation shown at the top of Fig. 2a, the 
input vector is encoded in the amplitude of the optical signals sent to 
the different matrix inputs. In addition to amplitude at a given wave-
length, the input vector is also encoded at different wavelengths, thus 
enabling multiple calculations to be carried out simultaneously, while 
avoiding unwanted interference at the photodetector array.

Figure 2b depicts a scanning electron micrograph of the resonator 
used for comb generation and Fig. 2c shows an optical image of a fab-
ricated 16 × 16 matrix with a 4 × 4 matrix as an inset. Key chip regions 
are magnified in the scanning electron micrographs on the right. Cou-
pling of light into the optical chip is achieved using total internal reflec-
tion couplers51,52 (lower inset of Fig. 2c), that allow the use of a wide 
wavelength spectrum. The PCM cells acting as the matrix elements 
are deposited on top of waveguide crossings (upper inset of Fig. 2c).

In addition to substantial benefits in modulation speed (for chang-
ing the vector inputs), an optical implementation of a matrix-vector 
multiplier allows the harnessing of wavelength division multiplexing to 
execute parallel MVM operations. In particular, as Fig. 2d shows, the same 
matrix can be used to process several input vectors at the same time when 
all the individual vectors are encoded in different wavelengths. Depend-
ing on the number of lines available in the frequency comb, the multi-
plexing scheme can be extended further, leading to substantial speed 
gains. Figure 2e shows the optical spectrum of an on-chip microcomb, 
revealing lines with 100-GHz spacing over a range of more than 25 THz.

To illustrate the principle outlined above experimentally, the con-
volution of an input image depicting a handwritten ‘4’ (Fig. 3a) is per-
formed using four 3 × 3 image kernels (resulting in a 9 × 4 filter matrix) 
and a single vector (9 × 1) per time step (Fig. 3b–e). Note that din = 1 and 

dout = 4 in this example. The image kernels applied in this example are 
chosen for edge detection and are shown below the output images 
(for how exactly the matrix elements are defined in the PCM state, see 
Supplementary Information section 8). After obtaining the results of 
the MVMs, the output values are offset by +0.5 and the values below 
0 are set to 0 (black pixel) and the values above 1 are set to 1 (white). 
Each of the kernels highlights different edges of the original image: 
Fig. 3b, for example, highlights upper edges, whereas Fig. 3d brings 
out the opposite lower edges. Figure 3f shows the combined images 
(difference between alternating edges and addition of the two result-
ing images), highlighting that all edges have been properly detected. 
Since the four kernels are all inscribed in the same matrix, the pixel 
values of all four output images are obtained simultaneously, including 
more than 63,000 inner-product operations in total. The edge features 
are clearly visible, which emphasizes the effectiveness of our optical 
convolution operation. The inner product of the entire convolution was 
processed at approximately 1 kHz, limited only by the speed of the vari-
able optical attenuators. Thus, owing to the slow electronic control and 
serial communication between the computer and microcontroller, the 
overall processing in this particular example took about four minutes. 
It should also be noted that in the examples of Fig. 3b–e, for each opti-
cal MVM, a software MVM operation is performed in a post-processing 
step to subtract a certain reference power from the measured output 
power in the matrix columns (more details are provided in the Sup-
plementary Information).

To avoid the need for the above post-processing, the reference 
convolution operation can also be performed optically in the same 
on-chip matrix. In this case, one matrix column is in a reference state 
(see Supplementary Information). The output value from this column 
is then subtracted from all the matrix columns holding the actual image 
kernels. Figure 3g–i shows an experimental example of a convolution 
operation, which was performed without electrical post-processing 
using reference subtraction. Here, a 3 × 3 kernel (emboss filter) was 
applied using a 9 × 2 matrix, with one column for the image kernel 
and one column for the reference. The original image is shown on the 
left, whereas the experimental output image after the convolution 
operation is shown in the middle panel. From comparison with the 
calculated expected output on the right, it can be seen that the on-chip 
matrix performs well without the need for the post-processing step. 
We note that even though the image has three colour channels (red, 
green and blue; din = 3), the convolutions are performed on each channel 
independently and combined in the end, leading to the output image. 
However, this is more a limitation of the size of our hardware matrix 
than a fundamental limitation of this technology.

Having demonstrated the basic capabilities of our phase-change 
integrated photonic approach to performing convolutional operations 
in the optical domain, we now show, in Fig. 4, experimental examples of 
processing four input vectors in parallel at the same time. In this case, 
four pixels of the new image are obtained per image kernel simultane-
ously, thereby shortening the processing time by a factor of four. The 
kernel size used for this experiment is 2 × 2 and the input dimension 
of the image is din = 1, leading to a 4 × 4 filter matrix. The convolutions 

a b c d e f Fig. 4 | Convolution using parallel MVM operations. 
a–e, The original input images are shown in a (London 
Underground sign photograph taken by author;  
zebra photograph, WWU, Ehrman Photographic/
Shutterstock.com) and the output images using four 
different image kernels for highlighting edges are 
shown in b–e. The size of the four image kernels is 2 × 2 
corresponding to a 4 × 4 filter matrix. In each time 
step, four input vectors are processed simultaneously 
via wavelength division multiplexing as illustrated in 
Fig. 2c. f, Combined image from b–e showing 
successful edge highlighting.
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again highlight different edges that can clearly be seen—for example, 
in the representation of the bricks in the upper image. Figure 4b and e 
emphasize vertical edges, whereas Fig. 4c and d highlight horizontal 
edges. This is in spite of variations in the vertical direction caused by 
power fluctuations of the input signal, underlining the robustness of the 
technique. Fig. 4f shows the combined images highlighting all edges. 
Given that four vectors are processed in parallel, the processing time is 
also decreased here by a factor of four compared to the results of Fig. 3.

Digit recognition with a CNN
Having shown that the photonic tensor core is capable of processing the 
convolutions demonstrated with different image filters, in a next step 
a CNN (see Fig. 5a) is built and tested against the MNIST handwritten 
digit database36. To test the accuracy of the predictions of the network, 
10,000 test images were processed using the photonic matrix for the 
convolutions at a rate of 2 GHz (resulting in a processing time of 8.1 μs 
per image) with an FPGA for electronic control (more details on the 
experimental setup are given in the Supplementary Information and 
Supplementary Figs. 20–22). The confusion matrices illustrating the 
predictions for the different images with the experimentally obtained 
and the calculated results are shown in Fig. 5b. The experimental imple-
mentation of the CNN reached an accuracy of 95.3%, showing good 
agreement with the calculated prediction accuracy of 96.1%.

To analyse the computational accuracy of the optical convolutional 
processor for single dot-product operations, randomly chosen input 
vectors with nine entries are processed using a fixed matrix column and 
are compared against the expected analytically calculated multiplica-
tion result. The results for 100,000 calculations are scaled to the range 
[0, 1] and plotted in Fig. 5c together with the corresponding histogram, 
revealing a standard deviation of 0.008, which results in a resolution of 
5 bits (more information on the evaluation of the resolution is given in 
the Supplementary Information and Supplementary Fig. 9).

Conclusion
We have described the first instance of a photonic tensor core that 
combines in-memory computing with state-of-the-art photonic inte-
grated microcombs, enabling parallelizing convolution operations in 
the same physical device. We demonstrate simultaneous data transfer 
and computing at speeds comparable to fibre networks. Prior optical 
approaches to computing have largely been limited by a lack of inte-
grated non-volatile photonic memory and the lack of multiplexing capa-
bility for such calculations31,33,53. Our approach overcomes both these 
limitations by (1) using non-volatile PCMs integrated onto waveguides 
to locally store convolutional kernels on-chip and (2) using photonic 
chip-based frequency combs to enable true in-memory photonic com-
puting using WDM capability. The photonic tensor core demonstrated 
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Fig. 5 | Digit recognition with a CNN and scalability. a, Layer structure of the 
network used to test the photonic tensor core with the MNIST handwritten 
digits database36. A rectified linear unit (ReLU) function is applied after the 
convolution and the Softmax function is applied in the classification layer.  
b, Confusion matrices showing similar performance for the prediction results 
for the experimental (95.3%) and calculated CNN (96.1%). c, Calculation 
accuracy for 100,000 MAC operations multiplying a vector of nine entries with 
a fixed matrix. The inset shows a histogram of the data revealing a standard 

deviation of 0.008 and therefore a resolution of 5 bits. d, Optical loss of the 
matrix as a function of its size. The heatmap depicts calculated optical loss for  
a directional coupler loss of 0.1 dB and a crossing loss of 0.12 dB. The stars 
represent measured optical loss for fabricated matrices. e, Eye-diagram for a 
matrix multiplication with a 2 × 1 matrix at a modulation speed of 13.5 GHz. The 
two inputs are modulated with two pseudo-random-bit-patterns, resulting in 
three different levels for the multiplication result.
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in this work is capable of operating at the speed of two tera-MAC opera-
tions per second (two trillion (1012) MAC operations per second). Even 
faster operation, by an increase of several orders of magnitude, may 
be achievable by moderate scaling with state-of-the-art foundry pro-
cesses. Using, for example, the smaller-footprint and industry-standard 
silicon-on-insulator platform, the matrix size can easily be scaled up to 
40 × 40 (with acceptable loss; see Fig. 5d and Supplementary Fig. 10). 
With high modulation speeds exceeding 13 GHz (see the 2 × 1 MVM in 
Fig. 5e) available in the optical domain, computing densities of more 
than 400 TOPS per mm2 with a throughput exceeding 1 peta-MAC opera-
tion per second (1015 MAC operations per second) can be achieved 
(see more details in the Methods and Supplementary Information, 
Supplementary Tables 1, 2 and Supplementary Figs. 3, 4).

A key feature of our approach is that, because the convolutional 
operation is a passive transmission measurement, the calculations can 
in theory be performed at the speed of light at very low power (17 fJ per 
MAC, considering only optical contributions), experimentally limited 
only by the modulation and detection bandwidths. Making use of the 
wavelength division multiplexing capabilities inherent to all-optical 
systems, our fast and parallelized implementation promises higher 
computational bandwidths than in electronic devices, because several 
pixels or even complete images can potentially be processed in a sin-
gle time step. Our approach to convolutional processing provides an 
effective method for removing the computing bottleneck in machine 
learning hardware for applications ranging from live video processing 
to autonomous driving and AI-aided life-saving applications. More 
importantly, such an approach more broadly suggests that integrated 
photonics are coming of age and in some cases can begin to match and 
even challenge electronic computation.
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Methods

Device fabrication
The photonic circuits used for the convolution experiments are fabri-
cated using a three-step electron-beam lithography (Raith EBPG 5150) 
process on a silicon nitride (325 nm) on silicon oxide (3,300 nm) on 
silicon wafer (Rogue Valley Microdevices). The complete circuit was 
designed using GDShelpers, a design framework for integrated cir-
cuitry54.

In the first lithography step, windows in the positive tone resist 
(poly(methylmethacrylate), PMMA) are exposed for the deposition 
of alignment markers made from gold. The resist is developed in 1:3 
methyl isobutyl ketone (MIBK):isopropanol for 120 s and a layer stack 
of 5 nm chromium, 120 nm gold and 5 nm chromium are evaporated 
via electron-beam physical vapour deposition. By sonicating the chip 
in acetone, the PMMA is removed and only the gold markers in the 
exposed positions remain. The markers are used in the second step to 
align the photonic structures. After spin-coating a layer of 300 nm of 
the resist and prebaking it for 60 s at 85 °C, an etch mask is exposed 
in the negative-tone electron-beam resist arN 7520.12 (Allresis). The 
photonic structures are developed in MF-319 (Allresis) for 75 s and a 
post-development bake is performed at 85 °C for 60 s. By using reac-
tive ion etching with a CHF3/O2 plasma, the mask of the photonic cir-
cuits is transferred into the sample. The silicon nitride layer is fully 
etched leaving single mode waveguides at telecommunications wave-
lengths with a width of 1.2 μm and a height of 325 nm. Subsequently 
the remaining resist is removed in an oxygen plasma for 10 min. In the 
third electron-beam lithography step, windows for the deposition of 
the PCM are written using the same markers as for the photonic struc-
tures for the alignment. The same process as in the first electron-beam 
lithography step is used. Finally, 10 nm of the PCM (Ge2Sb2Te5) and 10 
nm of indium tin oxide (ITO) are sputter-deposited on the sample. Both 
layers are sputtered using radio-frequency sputtering with an argon 
plasma (5-mTorr pressure, 15 standard cubic centimeters per minute 
(sccm) Ar, 30-W radio-frequency power and a base pressure of 2 × 10−6 
Torr). The ITO is used as a protective film to prevent oxidation of the 
PCM. As in the marker-deposition, the PMMA is lifted off by sonicating 
the sample in acetone, leaving the PCM only in the desired positions 
on the photonic circuitry. Prior to the experiments the Ge2Sb2Te5 is 
crystallized on a hot plate at 220 °C for approximately 10 min.

Measurement setup
The experimental setups used to perform the convolution experiments 
are shown in Supplementary Figs. 1–3. The individual wavelengths 
are generated using a frequency comb that is operated in the single 
soliton state and separated using a fibre-based multiplexer. For the 
image processing experiments (Figs. 3 and 4) the wavelengths (input 
vectors) are modulated using variable optical attenuators based on 
micro-electro-mechanical systems, whereas the fast modulation (Fig. 5) 
was performed with a 20 GHz electro-optic modulator. The input signal 
is coupled to the chip using 3D-printed broadband total internal reflex-
ion couplers (see Supplementary Figs. 17 and 18) capable of operating 
from the visible to the telecommunications-wavelength regime.

In the multiplexed version of the experiment, processing four vectors 
at the same time, the corresponding wavelengths are multiplexed and 
demultiplexed accordingly before and after the matrix, again using 
fibre-multiplexers. The convolution results are read using photodetec-
tors (New Focus Model 2011). In the frequency response experiment 
(Fig. 5), a fast photodiode (12 GHz) was used.

The measurement setup remains stable for extended periods, as also 
detailed in the Supplementary Information (Supplementary Fig. 11). 
Fluctuations in the transmission are due to temperature variations 
in the laboratory, which oscillate during day and night times. The 
long-term trend, however, remains unchanged over weeks (see Sup-
plementary Fig. 7) and also months53.

Realization of high-Q Si3N4 microresonators
The soliton microcombs used in our work are based on Si3N4 micro-ring 
resonators with a free spectral range of 100 GHz shown in Fig. 2b. 
The micro-resonators are fabricated using the photonic damascene 
process6, which provides access to high quality factors (Q factors, 
reaching 107) and enables the four-wave-mixing-based nonlinear 
frequency-conversion processes as well as the formation of DKS states 
at low pump powers7.

The microresonators were designed to have cross-section dimen-
sions of 0.82 μm × 1.50 μm, which ensure anomalous group velocity 
dispersion of about 1–2 MHz at around 1,550 nm, as needed for the 
Kerr comb generation and the formation of DKS states. The light is cou-
pled evanescently to a microresonator via the on-chip bus waveguide 
(with similar dimensions) located close to the microring, and which 
are additionally equipped with inverse tapers at the ends for edge chip 
coupling. The Si3N4 chips we used are furthermore fibre-packaged with 
an average loss of 4 dB per interface to facilitate light coupling in and 
out of the system. The fabricated devices have Q-factors exceeding 
5 × 106, which allows for DKS generation and switching55,56 even for 
relatively low input pump powers below 1 W.

Soliton comb generation
For the DKS generation a Si3N4 microring resonator is driven using 
a continuous-wave tunable fibre laser which is amplified with an 
erbium-doped fibre amplifier (EDFA) to a power level of about 1 W. 
A high-power bandpass filter is used to suppress the amplified spon-
taneous emission from the EDFA. The light polarization is adjusted 
using a fibre-based polarization controller to match the transverse 
electric polarized fundamental mode of the microresonator, and then 
is launched to the fibre-coupled Si3N4 chip.

To launch the DKS state, a standard pump tuning technique is 
applied3, in which the amplified seed laser is swept over the chosen 
frequency resonance from the blue-detuned side to the red-detuned 
side at a speed of approximately 200 GHz s−1. This approach allows us 
to generate multiple-soliton states with several pulses inside the cav-
ity, which, however, usually has a highly structured optical spectrum. 
To achieve the single DKS state with a spectrally smooth sech2-shaped 
envelope the soliton switching procedure is employed55 and the pump 
is slowly tuned towards shorter wavelengths until the single soliton 
state is stabilized. To improve the long-term stability of the gener-
ated DKS states and align the resulting optical frequency comb to the 
established International Telecommunication Union grids, the Si3N4 
chip is thermally controlled, which enables the use of the standard 
WDM equipment and optical comb stabilization against environmental 
temperature fluctuations and setup drifts, ensuring >8 h of continu-
ous operation.

The resulting DKS-based optical frequency comb with 100-GHz 
line spacing and spanning over multiple telecommunication bands is 
coupled out from the chip. The residual pump is suppressed using a 
fibre-based notch filter, and a small portion of the light (1%) is used for 
monitoring purposes. The rest of the comb is shown in Fig. 2e, and is 
then additionally amplified with C-band EDFA to further employ it in 
the setup for encoding and demultiplexing of the image vectors. The 
amplification of the EDFA of up to 15 dB was individually chosen for the 
different experiments and is mainly used to compensate for coupling 
losses between the fibre array and the chip.

Details of the convolution operation in a CNN
For the convolution between an input image of dimension n × n with 
din channels and a filter of dimension k × k × din, the resulting output 
image is of dimension (n − k + 1) × (n − k + 1). To perform each convolu-
tional operation, a filter is passed over the input image, inspecting a 
small window of pixels at a time. A pixel-wise MAC operation between 
the filter and the current filter window is carried out to calculate a 
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single pixel of the output image. In CNNs, dout convolutional kernels 
will be applied to the same image, which corresponds to 
(n − k + 1)2 × k2 × din × dout MAC operations per convolution layer and 
scales in computational complexity as O(n2k2). It is worth noting that 
for the case of large kernels (k > 15), performing the convolution in the 
Fourier domain can reduce computational complexity57 to about 
O(n2ln(n)). However, k ≤ 5 for most kernels in many common CNN mod-
els used today (that is, AlexNet58, ResNet43, GoogLeNet59, and so on) 
making the Fourier approach less efficient than direct convolution.

Implementation of the photonic matrix
To perform an MVM each vector entry (X1, ... Xm) is encoded on a sepa-
rate wavelength (see Fig. 2a). Therefore, the input vectors can be fed 
to the matrix by modulating the input signals with currently available 
fast electro-optical modulators, providing access to very high data 
rates. The matrix itself is designed as a waveguide crossbar array with 
additional directional couplers that equally distribute the input power 
to all PCM cells (more details of the splitting ratios of the directional 
couplers are given in the Supplementary Information and Supplemen-
tary Figs. 7, 8). The matrix elements are encoded in the state of the PCM 
and programmed optically through additional inputs in each matrix 
cell (Supplementary Fig. 5). By using a soliton microcomb with a mode 
spacing that exceeds the detector bandwidth, interference inside the 
waveguides can be avoided and the summation of the individual prod-
ucts (of the MVMs) can be performed by adding the comb teeth to the 
output waveguides, also by using directional couplers. With the hori-
zontal directional couplers, the input vectors are equally distributed 
to the different columns of the matrix (which represent the individual 
image kernels), whereas the vertical directional couplers combine 
the input light after interaction with the PCM cells and perform the 
accumulation operation. It should be noted that each vector entry 
interacts only with a single PCM cell per matrix column. This interac-
tion can be viewed as a single multiplication between the incoming 
amplitude and the absorption of the PCM cell, as has been shown in 
previous work60. The output power at each column of the matrix rep-
resents the inner-product (the sum of the individual products) of the 
input vector with a kernel multiplied by a certain (fixed) factor of 1/
(m × n), which depends on the matrix size. Power distribution due to 
fan-out accounts for the 1/n loss, whereas combining m non-interfering 
sources with directional couplers accounts for the additional 1/m loss 
due to energy conservation.

Parallel MVMs
To increase the compute density, the throughput of the photonic ten-
sor core multiple vectors can be fed to the matrix at the same time, 
making use of wavelength division multiplexing (as shown in Fig. 2d). 
The wavelengths needed to encode the vectors are generated using a 
single DKS state of a microcomb4,6,61 which is fed into a demultiplexer 
to split up the individual wavelengths (λ1 to λ16). After manipulating the 
amplitude of each comb line individually (according to the value of the 
input vectors) by using variable optical attenuators, the correspond-
ing entries of each vector are multiplexed back together (that is, λ1, 
λ5, λ9, λ13) and sent to the matrix input. After propagating through the 
filter matrix, all output waveguides of the matrix contain all 16 input 
wavelengths. Proper demultiplexing and combining of the wavelengths 
corresponding to the individual vectors yields the convolutional results 
that can be measured with photodetectors. In the current example, 16 
inner-product operations (four kernels applied to four input vectors) 
are carried out in a single time step.

Details of the accuracy measurements
The accuracy measurement of the experiment shown in Fig. 5c was 
carried out using the same setup as for edge detection, using variable 
optical attenuators operated in the kilohertz regime and a 9 × 1 matrix. 
We note, however, that the main source limiting the precision of MVMs 

in our architecture are the electronic signals driving the modulators and 
the extinction ratio of the modulator (both of which do not depend on 
frequency). Therefore, no loss in precision is expected when driving the 
system at higher speeds. We also note that the matrix elements can be 
programmed with a precision of more than 8 bits using a closed-loop 
approach, as shown in Supplementary Fig. 6.

Structure and implementation of the CNN
The CNN employed in our experiments is depicted in Fig. 5a and consists 
of the input layer taking the pixel data (28 × 28 pixels, single channel) 
that is then passed to a convolutional layer consisting of four 2 × 2 ker-
nels plus subsequent Rectified Linear Unit (ReLU) activation, resulting 
in an output of dimension 27 × 27 × 4 (valid padding). The output from 
the convolution step is flattened and fed to a fully connected layer with 
ten neurons. The probabilities for every digit are obtained from the final 
classification using the Softmax function. The network was trained via 
software (see Supplementary Information section 14 for more detail) 
and the weights of the filter kernels were programmed to the states of 
the PCM cells in the on-chip matrix.

Projections to the future
The experimental data in the main paper were obtained with matrices 
up to a size of 9 × 4, with a maximum of four input vectors per time 
step and a modulation speed of up to 2 GHz. To estimate the ultimate 
performance capabilities of the system, we now explore the scaling 
capabilities in terms of matrix size, modulation speed and number 
of parallel vectors. The main factor affecting the achievable matrix 
size is the optical loss induced by the photonic matrix, which results 
from equally splitting the light to all matrix cells, combined with the 
insertion loss of the directional couplers and waveguide crossings. As 
detailed in the description of the construction of the photonic tensor 
core (detailed in the Supplementary Information), the optical loss in 
the matrix itself scales with the matrix size as 1/(m × n) for a matrix 
size m × n. Additional loss is added by the directional couplers and the 
waveguide crossings and increases linearly with the matrix size. The 
propagation loss of the waveguides (0.2 dB cm−1) can be neglected in 
comparison to these contributions. Figure 5d shows a heatmap of the 
calculated matrix loss as a function of the matrix size, considering 
measured insertion loss of 0.1 dB per directional coupler and 0.12 dB 
per crossing (see Supplementary Information sections 4 and 6). The 
stars on the diagonal represent measured optical loss for fabricated 
matrices with sizes up to 32 × 32, and agree well with the calculations 
(see Supplementary Figs. 10 and 15). By further improving the loss of 
the crossings62 and directional couplers the limits to matrix sizes can 
be increased.

To illustrate convolutional processing using high-speed modulation 
of the input vectors, Fig. 5e shows an eye diagram at a modulation speed 
of 13.5 GHz obtained from a 2 × 1 matrix. The two electro-optical input 
modulators (bandwidth 40 GHz) were driven by 27 pseudo-random-bit 
patterns provided by a fast pulse-generator, thus resulting in three 
output levels that can be clearly distinguished. As the photonic matrix 
itself is operated passively in a transmission measurement, the speed 
is limited only by the bandwidth of the modulators and detectors. In 
the experiment, a detector with a 3-dB bandwidth of 12 GHz was used 
(additional data on modulating the individual matrix inputs up to 14 
GHz were included in the Supplementary Information).

Because the photonic system is designed with broadband input cou-
plers and broadband directional couplers in silicon nitride with a wide 
optical transparency window, the tensor processor supports more 
than 200 individual wavelengths from the frequency comb source 
with a spacing of 100 GHz (see Supplementary Information section 13 
and Supplementary Fig. 19). In addition to the spectral width of the 
frequency comb, the influence of wavelength-dependent parts in the 
matrix design must also be considered when estimating the wavelength 
range exploitable for the calculations. In this case, it is predominantly 



the wavelength dependence of the directional couplers that hinders the 
equal distribution of the input power for all wavelengths. Whereas our 
design offers an impressive range of approximately 100 nm, this can be 
considerably improved by an adapted design63. The influence of disper-
sion in the PCM absorption can be neglected in the wavelength range 
considered and could be corrected by adjusting the input amplitudes 
of the different comb lines. Thus, for a 9 × 4 matrix, four multiplexed 
input vectors and a modulation speed of 14 GHz, a processing speed 
of 2 trillions (1012) of MAC operations per second (9 × 4 MACs × 4 input 
vectors × 14 GHz) can be obtained. This, however, is not the ultimate 
speed, since we are limited here by the modulation and detection band-
width of our particular experimental setup.

When comparing optical architectures with digital electronics, 
it is helpful to use compute density (defined here as TOPS (trillions 
of operations per second) normalized by the processor area53) as a 
figure-of-merit for performance. This helps us to directly compare 
the processing throughput of architectures that may employ very dif-
ferent schemes for computing MVM operations. For the SiN devices 
demonstrated here, the area of a single MAC (with one MAC being two 
operations) unit cell is 285 μm × 354 μm. This, when operating at 12 GHz 
with 4 input vectors via WDM, corresponds to a compute density of 
1.2 TOPS per mm2. By moving to a silicon-on-insulator platform with a 
nominal bend radius of 5 μm and using integrated electrical control of 
the Ge2Sb2Te5 (refs. 64,65), it would be straight-forward to reduce the area 
of the MAC unit cell to less than 30 × 30 μm2, increasing the compute 
density to 420 TOPS per mm2 per input channel (see Supplementary 
Information section 11. We also demonstrate increased compute density 
with a silicon-on-insulator prototype illustrating the feasibility of this 
approach (Supplementary Figs. 12–14) and scaling linearly with the num-
ber of input vectors via WDM—a notably different computing paradigm 
compared to electronic approaches (note that the compute density 
considers only the photonic tensor core itself, without the electronic 
control and the off-chip multiplexers). The energy efficiency for the 
actual experiments can be calculated to be 0.4 TOPS per Watt for 5-bit 
resolution (including the optical power as well as the analogue-to-digital 
converters and modulators which we estimate to be dominating the 
consumption; see Supplementary Information). Moreover, by reduc-
ing the loss of the directional couplers and waveguide crossings and 
integrating detectors and modulators on-chip, the efficiency can be 
increased to 7.0 TOPS per Watt in the future. Considering only the optical 
energy based on the power needed to overcome shot-noise for a fixed 
8-bit precision number at the output, the energy per MAC operation 
can be as low as 17 fJ per MAC (see Supplementary Fig. 16).

To estimate the full capabilities of the optical accelerator for convo-
lutional operations, the performance of common optical components 
in foundry services66,67 must be considered in combination with the 
wavelength range of the frequency comb that can be used. The fre-
quency comb clearly shows lines from 1,500 nm to 1,650 nm (see Sup-
plementary Information), leading to a range of 150 nm exploitable for 
computation that can be extended by optimizing the setup. Consid-
ering the spacing of the comb lines of 100 GHz (0.8 nm), this leads to 
approximately 150 nm/0.8 nm = 187 different wavelengths. Decreas-
ing the spacing to 50 GHz (0.4 nm) and increasing the matrix size to 
50 × 50, the operational speed can reach an unprecedented 1 peta-MAC 
operations per second (that is, a quadrillion (1015) MAC operations 

per second) for a single matrix, assuming a modulation and detection 
speed of 50 GHz. These large matrix sizes are experimentally feasible 
using variable-length directional couplers and have been demonstrated 
using a photonics foundry process in 201368.
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