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Abstract: Over the past decade, artificially engineered op-
tical materials and nanostructured thin films have revolu-
tionized the area of photonics by employing novel concepts
of metamaterials and metasurfaces where spatially varying
structures yield tailorable “by design” effective electromag-
netic properties. The current state-of-the-art approach to
designing and optimizing such structures relies heavily on
simplistic, intuitive shapes for their unit cells or metaatoms.
Such an approach cannot provide the global solution to a
complex optimization problem where metaatom shape, in-
plane geometry, out-of-plane architecture, and constituent
materials have to be properly chosen to yield the maximum
performance. In this work, we present a novel machine
learning–assisted global optimization framework for pho-
tonic metadevice design. We demonstrate that using an
adversarial autoencoder (AAE) coupledwith ametaheuristic
optimization framework significantly enhances the optimi-
zation search efficiency of the metadevice configurations
with complex topologies. We showcase the concept of
physics-driven compressed design space engineering that

introduces advanced regularization into the compressed
space of an AAE based on the optical responses of the de-
vices. Beyond the significant advancement of the global
optimization schemes, our approach can assist in gaining
comprehensive design “intuition” by revealing the under-
lyingphysics of theoptical performance ofmetadeviceswith
complex topologies and material compositions.

Keywords: machine learning; metasurface; optimization;
thermal emitter.

1 Introduction

Multiconstrained optimization of metamaterials [1] and
metasurfaces [2–5] requires intensive computational efforts.
The main goal of such optimization is to determine the dis-
tribution of constituent materials within the computational
domain, which assures the best performance of the meta-
device while satisfying all the constraints of the problem.
Recently, various gradient-based [6–10] and metaheuristic
algorithms [11, 12] (evolutionary, swarm based) have been
adapted to advance nanophotonic design problems. How-
ever, even the simplest realizations of these optimization
frameworks depend heavily on computationally expensive
three-dimensional (3D) full-wave direct electromagnetic
solvers, thus making the proposed frameworks very time-
consuming and inefficient.

Moreover, the computational costs of conventional
optimizationmethods increasewith thenumber of additional
constraints, thus making these methods less practical for
highly constrained problems. On the other hand, with the
development of novel material platforms and advances in
nanofabrication techniques, there is a growing interest in the
multiconstrainedoptimizationof suchmetastructures,which
can be decisive in addressing critical problems in the fields of
space exploration [13], quantum technology [14], energy [15],
and communication [16]. There is a critical demand for effi-
cient optimization frameworks capable of performing global
optimization searches within highly dimensional parametric
domains with complex optimization landscapes.
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Due to its versatility and efficiency, machine learning
(ML) algorithms have been successfully applied to different
areas of photonics and optoelectronics. Various ML tech-
niques have demonstrated their potential to address the
bottlenecks of the conventional methods. For example,
machine and deep learning models have been used in
microscopy [17], quantum optics [18–20], and laser physics
[21]. Recently, discriminative networks have been applied
to various direct and inverse electrodynamics problems in
nanophotonics [22–33]. The main advantage of the data-
driven frameworks over the conventional electrodynamic
simulation methods is the ability of the neural networks
(NNs) to identify hidden correlations in the large data sets
during the training phase and utilizing the retrieved
“knowledge” to provide instantaneous solution searches,
without costly computations [34, 35].

Along with the optimization of geometrical parameters
andprediction of the optical response ofmetastructureswith
simplistic shapes, the advanced deep learning algorithms
have been used to perform optimization of the metadevices
with complex topologies. Thus, specific classes of generative
networks, such as generative adversarial networks (GANs)
[36, 37] and autoencoders [38–40], have been applied to
nanoantenna design optimization. Recently, GANs and
AAEs have been coupled with adjoint topology optimization
(TO) technique for optimizing the diffractive dielectric grat-
ings [41, 42], as well as thermal emitters [43]. It has previ-
ously been demonstrated that by coupling the AAE network
with a conventional adjoint TO formalism, it is possible to get
∼4900-time speedup in thermal emitter optimization
compared with conventional TO [34].

Within this work, we extended the AAE-based optimi-
zation framework beyond the random sampling of the de-
signs fromtheAAEnetwork. Specifically,wehavedeveloped
a methodology to perform the multiparametric global opti-
mization (GO) directly within the compressed design space,
via coupling the conditional AAE (c-AAE) network with a
differential evolution (DE) optimizer. The proposed
approach allows us to not only determine the antenna
shape/topology but also optimize the geometrical parame-
ters of the unit cell (e.g., the thickness of the dielectric spacer
and the array periodicity). Moreover, we demonstrated that
supervised training of the c-AAE network allows adding
physics-driven regularization to compressed design space
during the training phase, which in turn leads to better GO
searches. To showcase the performance of the proposed
AAE-based GO technique, we optimized the thermal emitter
design with two different methods: (i) the c-AAE network
coupled with a DE optimizer (c-AAE + DE) and (ii) DE opti-
mization utilizing the compressed design space with
physics-driven regularization (c-AAE + rDE).

Section 2 describes the main optimization problem
under consideration, while Section 3 introduces the main
data generation framework. Specifically, Section 3 de-
scribes the structure, training, and design generation
process based on conditional AAEs, as well as rapid ef-
ficiency estimation process via pretrained conditional
convolution NNs. Within Section 4, we focus on the GO
scheme based on the developed AAE framework. Section
5 showcases the concept of physics-driven compressed
space engineering via supervised training of the condi-
tional AAE network, as well as demonstrates the GO
within the regularized compressed design space. Section
6 concludes the work.

2 Optimization problem

Without loss of generality, we focus on the optimization of
thermal emitters for thermophotovoltaics (TPVs) utilizing
GaSb photovoltaic (PV) cells with a working band ranging
from λmin = 0.5 μm to λmax = 1.7 μm (shaded area in
Figure 1a). To maximize the generation of electric power
from the TPV system, the emissivity of the thermal emitter
shouldmaximize in-band radiation (the red shaded area in
Figure 1a) andminimize the out-of-band radiation (the blue
shaded area in Figure 1a). Hence, the emissivity of the ideal
thermal emitter is a step functionwith ε(λmin   ≤  λ  ≤  λmax) � 1
and zero elsewhere (depicted as the dashed blue contour in
Figure 1a). Recently, gap-plasmon structures have been
proposed as a viable solution to the thermal emission
reshaping problem [44–47]. However, due to the simplistic,
nonoptimal antenna designs, the efficiency of such thermal
emitters has been limited.

Within this work, we consider a thermal emitter
comprising the titanium nitride (TiN) back reflector [48], a
silicon nitride (Si3N4) spacer, and a TiN plasmonic antenna
in the top layer (Figure 1b). The main goal of the optimi-
zation is to determine the shape/topology of the top an-
tenna, as well as the optimal configuration of the entire
device, i.e., its 2D periodicity and spacer thickness that
would drive the spectral emissivity to the step-like emis-
sivity of the ideal emitter. Here, we do not focus on the
details of the TO technique; instead, the paper is centered
around the AAE-assisted global optimization framework.
More details on the TO used for training set generation can
be found in our prior work [43].

For assessing the performance of our designs, we
define the efficiency of the thermal emitter as a product of
in-band (eff in) and out-of-band (eff out) efficiencies, which
is given as follows:
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eff � eff in   ⋅  eff out , (1)

here

eff in � ∫
λmax

λmin

ε(λ)Bω(λ,T)dλ/ ∫
λmax

λmin

Bω(λ,T)dλ ,

eff out � ∫
∞

λmax

εTiN(λ)Bω(λ,T)dλ/ ∫
∞

λmax

ε(λ)Bω(λ,T)dλ .

where the Plank law, Bω(λ,T) � 2hcλ−3(ehc/(λkBT) − 1)−1,
gives the spectral radiance of the blackbody at a given
temperature T and wavelength λ; the fundamental con-
stants include the Planck constant h, the Boltzmann con-
stant kB, and the speed of light in free space c. In (1) ε(λ) and
εTiN(λ) denote the spectral emissivities of the optimized

emitter and a bare TiN back reflector, respectively, T is the
working temperature of the emitter, wavelengths λmin, λmax

are, respectively, the lower and upper bounds of the PV cell
operation band.

eff in is an in-band radiance of the emitter normalized to
the in-band radiance of an ideal emitter at 1800°C, while
out-of-band efficiency eff out is defined as a ratio of the out-
of-band radiance of a back reflector and radiance of the TO
design. Such definition of the out-of-band efficiency is
dictated by the fact that the response of the gap-plasmon
structures in the long-wavelength limit is fully determined
by the material properties of the back reflector, and out-of-
band emissivity is fundamentally limited by the optical
losses of TiN.

Figure 1: Conditional adversarial autoencoder-based data generation.
(a) Blackbody radiationof a bare heater (solid black curve) corresponding to the emissionof a blackbody at 1800C. The gray rectangular region
highlights theGaSbphotovoltaic (PV) cell working band.Only in-band radiation is converted into electrical power (red area), while out-of-band
radiation causes unwanted heating of the PV cell (blue area). The dark blue dashed contour corresponds to an ideal thermal emitter’s
emissivity/absorption spectrum. (b) The gap-plasmon thermal emitter designwith ametallic TiN back reflector, a Si3N4 dielectric spacer, and a
top TiN plasmonic antenna. The topology optimization (TO) aims to optimize the top layer with a TiN/air mixer to match the step function
emissivity pattern of an ideal emitter. (c) Training of the c-AAE network: Along with the antenna topology, the c-AAE is trained on a conditional
vector with geometrical parameters of the unit cell (unit cell size, spacer thickness). (d) c-AAE–assisted rapid design generation: The trainedG
network is coupled with a conditional Visual Geometry Groupnet (VGGnet) type network (c-VGGnet) for rapid efficiency estimation. The
geometrical parameters of the unit cell are used as constrained labels for generation of the designs, as well as estimation of the efficiencies.
c-AAE, conditional AAE; AAE, adversarial autoencoder.
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3 Conditional AAEs for rapid design
generation

To include all the design parameters into the optimization
framework, we couple the c-AAE network with TO
(Figure 1c) [49]. The c-AAE network is a generative model,
which consists of the encoder (E ), the decoder/generator
(G), and the discriminator (D). The E network is coupled
with G network aiming at compression and decompression
of the input design (x) through the so-called compressed
design space. During the training phase, the E and G net-
works are trained to minimize the reconstruction loss be-
tween input (x) and the generated (x̃) designs by forming
the 17-dimensional compressed design space. After the
training process, the G network can be used to generate
new designs based on the input compressed space vector
z̃ � E(x), which is a 15D coordinate vector appended with
two conditional labels l (unit cell size and spacer thick-
ness). The dimensionality of the compressed space and
conditional vector is defined by the main objective of the
optimization problem. It can be further enlarged according
to the requirements of the problem under consideration.
The regularization of the compress design space is ach-
ieved through the adversarial training process via coupling
to the D network. The D network is trained to distinguish
between samples from the compressed design space dis-
tribution q(z̃) and the predefined model p(z). During the
training process, the E network is trained to reshape the
compressed design space such that the D network cannot
distinguish between samples generated from the com-
pressed design space and predefined model. The adversa-
rial training forces the compresseddesign space to have the
same data distribution as the user-defined model p(z). So,
the main goal of the E and G networks is to learn the main
geometrical features of the antenna designs in the training
set, while the D network assures the regularization of the
formed compressed design space defined by the predefined
model. This is achieved via the optimization of the AAE
network weights (E, G, andD networks) during the training
phase by minimizing the following loss function:

L � Ladv + Lrec (2)

The regularization of the compressed space is achieved via
a minmax game between E and D networks which aims to
minimize the adversarial loss term Ladv [49]:

Ladv � min
E

max
D

[log(D(E(x), l)) + log(1 − D(z̃, l))] (3)

while the training of the E and G networks is done through
to minimize the reconstruction loss Lrec [49]:

Lrec � −min
E,G

[log p(x|G(E(x), l))] . (4)

Once the c-AAE is trained, the G network can be used as a
separate generative network that samples the new thermal
emitter designs based on the input compressed design
space vector and the geometrical parameters of the unit cell
(Figure 1d). To rapidly estimate the performance of the
designs, we couple theG network with a c-VGGnet [50] that
estimates the efficiency of the designs based on the input
binary image of the antenna (top view), thus avoiding time-
consuming full-wave simulations altogether. To realize the
conditional estimation, the conditional vector is coupled to
the first fully connected layer after the feature extraction
part of the convolutional neural networks (CNN). We give
the details on the c-AAE and c-VGGnet network architec-
ture in the supplementary materials.

The initial training set for the c-AAE network is ob-
tained by performing TO of the thermal emitter designs for
different cases of the unit cell sizes and spacer thicknesses.
Specifically, the TO optimization is used to generate 100
designs for each of the period-thickness combinations: the
period was chosen to be 250, 280, and 300 nm and spacer
thicknesses 30 and 50 nm, thus yielding 600 designs in
total. To train the c-AAE network, we use the data
augmentation technique employed in the study by Kudy-
shev et al. [43] and increased the training set up to 24,000
designs. The periodic nature of the thermal emitters allows
us to expand the initial data set by applying lateral and
rotational perturbations to the original design. Here, we
expand the data set by applying 20 lateral shifts and 90°
rotation to each design of the original set. The enlarged
design set, as well as corresponding periodicity and spacer
thickness labels, has been used to train the c-AAE network.
The predefinedmodel distribution is set to beGaussian that
is centered at the origin of 15D compressed space.

Figure 2a shows the adversarial (blue) and recon-
struction (red) losses evolution of the c-AAE network as a
function of training epochs. The reconstruction loss of theE
and G coupled network decreases with the training and
saturates at <0.1 value, which indicates that the G network
can reconstruct input design correctly from the compressed
design space. The adversarial loss decreases at the begin-
ning of the training, which corresponds to the fact that the
E network fails to generate the desired compressed space
distribution at the early steps of the training. However,
with the increasing number of the training epochs, adver-
sarial loss saturates at relatively high values (∼0.8), high-
lighting the ability of the E network to “fool” the D network
and passing the sample from the compressed space as
“real” through it. This fact indicates that the constructed
compressed design space has data distribution close to the
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predefined one. Once the training of the c-AAE network is
done, we have generated 4500 thermal emitter designs via
random sampling of the compressed space coordinates.
Specifically, the 300 designs for each of the combinations
of the periodicity (from 200 to 280 nmwith 20 nm step) and
spacer thicknesses (30, 40, and 50 nm) have been gener-
ated. The efficiency of each design has been assessed by
Finite-difference time-domain (FDTD) simulation (Lumer-
ical FDTD solver). Figure 2b shows the statistics of the
generated data set. The best design in the set has 93%
efficiency of thermal emission reshaping and corresponds
to 280-nm unit cell size and the 30-nm spacer thickness.
Figures 2c and 2d show the corresponding absorption/
emissivity spectra, as well as the gray body emission at
1800°C from the best design in the set (blue curves). The
inset in Figure 2c shows the antenna design. The complex
topology of the c-AAE antenna design enables 94% mean
in-band absorption and substantially suppresses the out-
of-band absorption spectrum (23% mean out-of-band ab-
sorption). This absorption behavior of the thermal emitter
leads to its high in-band emission and the rapid decay of
the out-of-band emission.

To perform the filtering of highly efficient design, as
well as to avoid time-consuming full-wave analysis, the

c-AAE network is coupled to the c-VGGnet regression
network, which estimates the performance of the design
based on the input design and unit cell parameters
(Figure 1d). The c-VGGnet regression network is trained on
the design set, which is generated by the c-AAE network
(Figure 2b). This training is done due to the high designs’
variance and a broader range of the unit cell parameters vs.
the TO generated set that allows for more efficient training
of the c-VGG network. Employing the generated design set,
unit cell parameters, and corresponding efficiency values
as ground truth, the c-VGGnet is trained by using mean
absolute percentage error loss function. Eighty percentage
of the designs are used for training, while 20% is used for
the validation loss estimation. The loss evolution during
the training process is shown in Figure 2e. The figure
demonstrates that the regression loss decreases and satu-
rates at 9%, indicating that c-VGGnet is capable of
retrieving the efficiency values based on the binary image
of the design with high accuracy. For assessing the per-
formance of the regression network, we calculate the co-
efficient of determination r2 that quantifies the ability of the
network to predict the variance of the true data. While in
the ideal case r2 should be equal to 100%, a sufficiently
high value of r2 (87%) is achieved.

Figure 2: Training of c-AAE and c-VGGnet networks.
(a) Evolutionof theadversarial (blue line) and reconstruction (red line) lossesduring the c-AAEnetwork training. (b) Theefficiencydistributionsof the
design set generated by the c-AAE network via random sampling. (c) Spectral emissivity of the best design in the generated set. The dashed vertical
black line shows theupper boundof thePV cell’sworkingband. The inset shows theunit cell of thebest design in the set (white color: TiN, black: air,
unit cell period (x and y) 280 nm; spacer thickness, 30 nm). (d) Emission spectrum of the blackbody (dashed black line) and thermal emitter (solid
blue line) at 1800 C. (e) Evolution of the training (blue line) and validation (red line) losses of the c-VGG predictive network during the training
process. (f) The regression results performed by c-VGGnet on the testing data set. White line shows the regression line; the colormap shows the
number of designs tested. c-AAE, conditional AAE; AAE, adversarial autoencoder; PV, photovoltaic; c-VGGnet, conditional VGGnet type network.
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Figure 2f shows the dependence of the predicted
values by the network vs. the true values. In the ideal case,
the point on the colormap should coincide with the
regression line (white, solid line). The integrated scheme of
the c-AAE generator with c-VGGnet opens the possibility to
perform rapid prototyping and efficiency estimation of the
metadevices (Figure 1d). This combination is a crucial step
for the realization of various, ML-assisted GO schemes for
highly constrained problems. The next two sections high-
light one of the possible c-AAE–assisted GO. The proposed
approach can be integrated with the other metaheuristic
and/or gradient-based optimization frameworks. The next
section describes the c-AAE–based GO technique based on
differential evolution optimization.

4 AAE-assisted global optimization

Due to thenonconvexnature ofmanyoptimizationproblems,
the design spaces usually correspond to the rapidly changing
figure of merit (FOM) landscapes that make the brute-force
approach inefficient in the quest for the global solution. This
issue becomes even more significant for multiconstrained
problems since the exhaustive search within highly dimen-
sional parametric landscapes would be extremely resource
heavy with no guarantee of retrieving the most optimal so-
lution. Hence, it is crucial to develop a global optimization
framework that is capable of using the “best of both worlds”:
(i) efficiency and scalability of the c-AAE–based optimization
framework and (ii) the ability of metaheuristic algorithms to
perform global optimization searches most efficiently. To
address the issues mentioned above, we develop a c-AAE–
assisted GO scheme, which is capable of performing global
search directly within the compressed design space.

Within thiswork, theDEalgorithm [51] hasbeen coupled
to the c-AAE–based data generation approach for retrieving
the global maximum inside the compressed design space.
The DE framework is a population-based metaheuristic al-
gorithm, which uses multiple agents to probe the solution
space and evolutionally converge to global extremum. At
optimization step, the positions of each of the agents in the
population are updated by adding the weighted difference
between two randomly selected agents from a given popu-
lation to the agent with the best efficiency at the current
iteration:

z̃i+1n � z̃ibest + F(z̃ir1 − z̃ir2) (5)

Here, z̃ibest is a compressed design space coordinate of the
agent with the best performance at ith iteration, F is a
mutation parameter, r1,2 = rand(1, N) are the random

indices, and N is a total number of agents within a given
population.

The coordinates of the agents at the next optimization
step are updated with (5) or kept unchanged. This choice is
made with a binomial distribution by generating a random
number, r = rand(0, 1), and comparing it vs. a predefined
recombination constant.

Within the developed optimization framework, the DE
optimizer sends the set of compressed design space vectors

z̃i1,N to the c-AAE generator. The G network generates the

designs, and the c-VGG-net estimates the efficiencies eff i1,N
of each design in the set. Once these efficiencies are sent
back to the DE optimizer, the coordinates of the agents are
updated at the next optimization step employing the
algorithm shown above. At the end of the DE optimization

run, we use the best z̃finalbest to generate the antenna design
and retrieve the corresponding unit cell configuration. For

this, we take two last elements of z̃finalbest corresponding to the
unit cell size and spacer thickness, encoded during the
constrained training of the c-AAE network. The c-AAE–
based GO framework assures an extremely flexible frame-
work that addresses highly constrained optimization
problems by enlarging the compressed design space with a
larger number of conditional labels during the c-AAE
training. Most importantly, the c-VGGnet regression
network removes the need for time-consuming full-wave
simulations at the optimization search stage. Additionally,
since the proposed approach uses the global optimizer as a
black box, the developed c-AAE–assisted framework can
be coupled to any global optimization techniques.

The DE optimization is implemented using the SciPy
library [52]. The total population size of the DE optimizer is
set to 20 agents, with a maximum iteration number of 80.
The mutation and recombination coefficients are set to 0.5
and 0.7, respectively. The optimization objective function
aims at minimizing the value of 1 − eff. Figure 3b shows the
typical conversancy curve of the c-AAE–assisted DE opti-
mization (cAAE + DE). The DE optimization starts with the
relatively high value of the objective function. However,
with the evolution of the optimization, the DE algorithm
converges to better efficiencies. The optimization stops
when the objective function gets saturated or themaximum
iteration is reached. We have performed 60 c-AAE + DE
optimization runs. Figure 3c depicts the statistics of the
efficiencies obtained from the runs. The analysis shows
that the c-AAE + DE approach assures much better per-
formance in comparison with the set generated directly
from the c-AAE network. The mean efficiency of the dis-
tribution is 85%, while the best obtained design has 95.9%
efficiency vs. 93% of the c-AAE set (Figure 2b). Figure 3d
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shows the absorption spectra of the best design in the set
(red line), while the blue curve indicates the efficiency of
the best design generated directly from the c-AAE network
(93%). The inset illustrates the best design generated with
the c-AAE + DE approach. The c-AAE + DE optimization
framework leverageds on the connection of the shape/to-
pology of the metadevices and their optical responses.
However, it is highly desirable to construct the physics-
driven compressed design space by incorporating avail-
able knowledge on the performance of the device into the
training process. By doing so, it is possible to regularize the
compressed design space for more efficient GO searches.
The next section describes the physics-driven compressed
space engineering framework and demonstrates the per-
formance of the GO within such design domains.

5 Physics-driven compressed
space engineering

The training of the c-AAE network on the TO data set
leads to the compressed design spaces, constructed
based on geometrical features of the metadevices,
omitting the available information regarding the optical
responses of the designs. However, using available in-
formation about the essential physics of the meta-
devices, it is possible to preengineer the compressed
design space for improved performance of the GO search.
Such regularization of the compressed design spaces can
be introduced by choosing the physics-driven pre-
defined model of the c-AAE network connected with the
FOMs of the metadevices.

Figure 3: c-AAE–assisted global optimization.
(a) Scheme of the c-AAE based GO algorithm. The GO engine is used as a black box that generates the agents’ coordinates within the compressed
designspaceandpass themto thegeneratorof the c-AAEnetwork. Thegenerator samples thedesign, and the correspondingefficiencies are rapidly
assessed via the c-VGGnet network. These efficiencies are returned to the GO engine to update the positions of the agents at the current iteration.
(b) Conversancy plot of the c-AAE + DE optimization framework. (c) Efficiency distribution for 60 designs generated by the c-AAE + DE. The legend
indicates the maximum efficiencies obtained via random search within the compressed design space (93%, gray) and by GO (95.9%, black).
(d) Spectral emissivity/absorption of the best designs generated by random search (blue) and GO (red). Thin vertical dashed line shows the upper
boundof thePVcell’sworkingband. The insetdepicts thebestunit cell design in theset (white color: TiN, black: air; unit cell period (xandy), 190nm;
spacer thickness, 45 nm). c-AAE, conditional AAE; AAE, adversarial autoencoder; PV, photovoltaic; DE, differential evolution; GO, global
optimization.
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This technique can be realized based on the supervised
training of the c-AAE network by adjusting the predefined
model and passing an additional binary regularization vec-
tor into theDnetworkat the training stage (see, Figure4a). For
demonstrating the physics-driven compressed space engi-
neering, we use two 15D Gaussian distributions in a pre-
definedmodel and introduce an additional 2D hot vector as a
label to theD network (Figure 4a). Inmore detail, the designs
in the training data set are divided into two classes based on
their efficiencies: (i) high efficiency (HE, eff > 60%) and (ii)
low efficiency (LE, eff < 60%) classes. The predefined model
distribution of the c-AAE model has been defined as follows:

zi � {N(μ � 2, σ2 � 1), effi   >  60%
N(μ � −2, σ2 � 1), effi   <  60%  , (6)

here, zi is a sampling of the predefinedmodel for ith design
in the set and Ν(μ, σ2) is the random normal distribution
with mean μ and variance σ2.

With this approach,we construct the compresseddesign
space, with two clusterization regions separated according
to the two efficiency-level classes. By applying the DE opti-
mization within the HE region, we can obtain the thermal
emitters with better efficiencies. Figure 4b shows the evo-
lution of the compressed design space throughout the
training process. The figure shows two first coordinates of
the 17-D compressed design space. The red markers corre-
spond to the HE class, while the blue ones represent the LE
designs. Initially, all designs are sampled as a mixture of HE
and LE classes. With the training, the clusterization of both
classes progressively appears. The final state of the

Figure 4: Physics-driven compressed design space engineering for GO.
(a) Scheme of the supervised training of the c-AAE network for physics-driven compressed space construction. The predefinedmodel is set to
be a combination of two 15-D Gaussian distributions symmetrically shifted from the origin. The additional “hot” binary vectors are used during
the training for regularization of the compressed space during training. (b) Evolution of the compressed design space within the training
process. The scatter plots show the distribution of the designs used in the training within 2D plane cut along the first two coordinates of the
17D compressed space. The bluemarkers depict the LE class data; redmarkers show the distribution of the HE class. (c) Efficiency distribution
of 80 designs globally optimized with the c-AAE + rDE. (d) Spectral emissivity/absorption of the best designs generated by random search
(blue dashed), c-AAE + DE (solid red), and c-AAE + rDE (black solid). The thin dashed vertical line shows the upper bound of the PV cell’s
working band. The inset shows the unit cell of the best design in the set (white color: TiN, black: air, period (x and y) 290 nm, spacer thickness
45 nm). (e) The “violin plot” of three design sets generated by, (i) random search within unregularized compressed design space (left gray
pattern, c-AAE), (ii) DE optimization within the unregularized compressed design space (center light blue pattern, c-AAE + DE), and (iii) DE
optimization within the regularized compressed design space (right dark blue pattern, c-AAE + rDE). LE, low efficiency; HE, high efficiency;
c-AAE, conditional AAE; AAE, adversarial autoencoder; PV, photovoltaic; DE, differential evolution; GO, global optimization.
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compressed design space is shown in Figure 4b
(epoch= 200). Once the training is done, theDEoptimization
is applied to theHEdesigns’ region of the compressed space.
We perform 80 runs with c-AAE + rDE optimization tech-
nique. Figure 4c shows the efficiency statistics of the opti-
mized designs. The additional regularization leads to better
performance of the DE optimizer vs. the unregularized case
(c-AAE + DE). Thus, the c-AAE + rDE ensures 87% mean
efficiency, with the best design in the set providing 96.4%
efficiency of thermal emission reshaping. Figure 4d shows
the emissivity spectrum of the best design in the set. The
optimized design delivers 96% of in-band emissivity and
substantially suppresses the out-of-band emission. The inset
shows the design of the best thermal emitter in the set.

Figure 4e shows the back-to-back comparison of the
efficiency distributions of three c-AAE–based optimization
frameworks, (i) the set generated from c-AAE by random
search (gray), (ii) c-AAE + DE (light blue) case, as well as
(iii) c-AAE + rDE (dark blue). A sampling of the emitter
designs from the random search (the c-AAE network with
no postselection) leads to a broad range of the efficiencies
with amean efficiency of 61% and amaximum efficiency of
93%. It can also be seen that the efficiencies are uniformly
distributed along the entire range (almost uniformwidth of
the shadowed area, left subplot in Figure 4e). In contrast,
the GO performed inside the unregularized compressed
design space enables the design generation with much
better efficiencies distribution with data concentrated
within [65%, 95.9%] efficiency range and the maximum
designs sampled around 90%efficiency (light blue pattern,
central subplot in Figure 4e). The regularization of the
compressed space coupled with the GO search leads to
even better efficiencies distribution within [79%, 96.4%]
(dark blue pattern, right subplot in Figure 4e). This analysis
clearly shows that the physical regularization of the com-
pressed design space allows adapting the design space
configuration to perform a better GO search.

It is important to compare the proposed global opti-
mization vs. previously demonstrated AAE-based “local”
optimization frameworks (AAE + TO and AAE + VGGnet)
[43]. The first approach (AAE + TO) utilizes a random
sampling of the designs from the AAE network and then
uses them as the initial condition for the TO refinement.
This approach generated a thermal emitter design with the
highest efficiency (97.9%) while taking ∼31 min per design
[43]. Such a relatively high computational time was the
result of time-consuming design refinements performedvia
additional TO iterations. We note that the computation
time would be even higher in the case of multiobjective

optimization. This leads to poor scalability of the approach
for multiobjective optimization. The second approach
(AAE + VGGnet) relies on the VGGnet network-based
filtering of the highly efficient, robust designs within the
randomly sampled AAE design set. While the second
approach generated the thermal emitter designs with an
efficiency of 95.5%, its computational cost was extremely
low (1.2 s per design) [43].

The AAE + DE and AAE + rDE approaches generate the
designs with the efficiencies of 95.9 and 96.4%, respec-
tively, while the computational cost for both of these new
GO methods is 14 min per design. Thus, both of the new
methods provide higher efficiencies in comparison to the
random sampling approach based on the AAE + VGGnet
method and generate the designs 2.2 times faster than
AAE + TO. The optimization efficiency and the speedup of
the AAE + rDE method could be further increased by
choosing the different types of global optimizers, as well as
through more comprehensive physics-driven regulariza-
tion of the compressed design space. Such flexibility of the
proposedc-AAE–basedglobal optimization frameworkmight
be instrumental for addressing multiobjective optimization
problems with a high number of constraints. All the infor-
mation on the computation environment is provided in
Appendix 3. Detailed information regarding the AAE-assisted
local optimization frameworks (AAE + TO, AAE + VGGnet)
can be found in the study by Kudyshev et al. [43].

6 Conclusion

In conclusion, we have developed a global optimization
framework utilizing a c-AAEnetwork that can be applied to a
wide range of highly constrained optimization problems in
nanophotonics and plasmonics, as well as in biology,
chemistry, and quantum optics. We show that by applying
the differential evolution optimization directly to the com-
pressed design space, it is possible to achieve efficient
optimization of the metadevices with complex topology. We
numerically demonstrate advanced compressed space en-
gineering by utilizing physics-driven regularization of the
compressed design space via supervised training of the
c-AAE network. The proposed physics-driven design space
compression leads to significant improvement in the GO
search. We also show that physics-driven regularization of
the compresseddesign space leads to amore intuitiveway of
performing the GO search within the compressed space,
which, in turn, leads to the almost perfect performance of the
optimized metadevices.
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Preengineering of the compressed design spaces of
metastructures can be used in combination with diverse
ML algorithms such as principal component analysis [53]
and cluster analysis [28] both to retrieve the best possible
solution of the problem and to gain hidden knowledge
about the physics of the metastructure with complex to-
pologies. For example, analyzing the eigenmodes of the
structures sampled from the high-efficiency cluster, it is
possible to gain additional intuition regarding the elec-
trodynamic mode components that lead to the optimal
metadevices. This technique would allow us to generalize
the physics requirements to the device design for achieving
the best possible performance and reconstruct the antenna
designs based on the first principles approach to the
problem.
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Appendix 1: c-AAE for design
production

An adversarial autoencoder (AAE) consists of three
coupled NNs: the encoder, decoder/generator, and
discriminator. Figure A1 shows a detailed description of
the neural networks.

Encoder

The encoder takes a 4096-dimensional vector (that
corresponds to a 64 × 64 binary design pattern) as an
input. We use two fully connected layers as the hidden
layers of the encoder and a 17-neuron layer as an output
layer of the encoder so that each of the hidden layers has
512 neurons. The last two elements are the geometrical
parameters of the unit cell used as a conditional label,
while the rest is a coordinate of the 15D compressed
design space. For hidden layers, the rectified linear unit
(ReLU) activation function is used, and one batch

normalization layer is coupled to the second linear
layer.

Decoder

The decoder has the same architecture as the encoder but
with the reversed sequence. The decoder generates a
4096-element output vector based on 17-dimensional input
(15D coordinate vector + 2 conditional labels). For the
output layer, we use the tanh activation function.

Discriminator

The discriminator takes a 17-dimensional latent vector as
an input and performs binary classification (fake/real).
Hence the output of the discriminator is one neuron. Here,
we have used 2 hidden liner layers with 512 and 256
neurons. The activation function for two hidden layers is
the ReLU and for the output layer is the sigmoid function.

The compressed space vector consists of 15D latent
coordinate and additional 2 labels with geometrical
parameters of the unit cell. The training of the conditional
AAE network has been realized according to the previously
proposed joint disentanglement technique [54].

Appendix 2: c-VGGnet structure

CNN takes 64 × 64 image of the design as an input and
passes it through three hidden layers, which consist of
convolutional layers with ReLU activation functions. Each
hidden layer is followed by the max. pooling layer, which
ensures the downsampling of the feature maps. The stack
of convolutional layers is followed by one fully connected
layer, which is paired with 2 conditional labels
corresponding to the unit cell geometrical parameters.
The base VGGnet architecture is followed by “linear”
activation function with “mean squared error” loss
function for efficiency prediction (regression). A detailed
description of the VGGnet is shown in Figure A2.

Appendix 3: Time requirement for
training set genera-
tion, training of the
networks

The generation of the original 600 TO designs (training
set) was performed on three cluster nodes in parallel,
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which took 328 h. The training of the c-AAE network on
topology optimized designs took 35 min, while the
training of the c-VGGnet for efficiency regression took
48 min. All the training of the networks, as well as
AAE + DE and AAE + rDE optimizations, were done on a
cluster node with two 12-core Intel Xeon Gold “Sky Lake”
processors @ 2.60 GHz (24 cores per node) and 96 GB of
RAM. The initial TOwas performed on three cluster nodes:

(i) two 12-core Intel Xeon Gold “Sky Lake” processors @
2.60 GHz with 96 GB of RAM; (ii) two Haswell CPUs @
2.60 GHz (20 cores per node) and 128 GB of RAM, and (iii)
two Haswell CPUs @ 2.60 GHz (20 cores per node) and
256 GB of RAM. Direct full-wave simulation at each
iteration was done in parallel, while the filtering,
calculation of gradients, and material distribution
updates were performed sequentially.

Figure A1: Structure of the c-AAE network.
c-AAE, conditional AAE; AAE, adversarial autoencoder.

Figure A2: C-VGGnet structure.
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