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Abstract: The prediction and design of photonic features
have traditionally been guided by theory-driven compu-
tational methods, spanning a wide range of direct solvers
and optimization techniques. Motivated by enormous ad-
vances in the field of machine learning, there has recently
been a growing interest in developing complementary
data-driven methods for photonics. Here, we demonstrate
several predictive and generative data-driven approaches
for the characterization and inverse design of photonic
crystals. Concretely, we built a data set of 20,000 two-
dimensional photonic crystal unit cells and their associ-
ated band structures, enabling the training of supervised
learning models. Using these data set, we demonstrate a
high-accuracy convolutional neural network for band
structure prediction, with orders-of-magnitude speedup
compared to conventional theory-driven solvers. Sepa-
rately, we demonstrate an approach to high-throughput
inverse design of photonic crystals via generative adver-
sarial networks, with the design goal of substantial trans-
verse-magnetic band gaps. Our work highlights photonic
crystals as a natural application domain and test bed for
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the development of data-driven tools in photonics and the
natural sciences.
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1 Introduction

The confluence of an exceptional abundance of data and
computational resources has enabled techniques of ma-
chine learning (ML), especially deep neural networks [1, 2],
to revolutionize fields across computer science, ranging
from image analysis [3–6] and natural language process-
ing [7–10] to decision making [11, 12]. Spurred by these
gains, there has been a surge of interest in applying ML
techniques to the natural sciences, e.g. in physics [13–18],
chemistry [19–21], and material science [22–24]. Tradi-
tionally, these disciplines have been dominated by theory-
driven computational tools: while extraordinarily varied,
each such technique is essentially the result of a series of
formal reductions and controllable approximations—e.g.
discretizations, expansions, or probabilistic averaging—
systematically applied to a known theoretical framework.
In data-driven approaches, by contrast, a large number of
numerical weights, jointly parameterizing a computa-
tional neural network, are tuned to minimize an error
measure across a specific or dynamically explored (su-
pervised or active/semi-supervised learning) labeled data
space.

The field of photonics—the study of electromagnetic
properties of (sub)wavelength-scalematerial structures—is
an appealing area for the application and development of
new data-driven approaches. Specifically, data on pho-
tonic systems can be generated in large quantities by nu-
merical means, owing to a large and mature suite of
computational tools, covering finite-element, boundary-
element, finite-difference or discontinuous time-domain,
and spectral methods [25]. Each enables high-accuracy
solutions of theMaxwell equations, e.g. subject to spatially
varying material response functions such as the
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permittivity ε(r). Provided the assumed material response
and geometric features of the underlying structures are
accurate, such calculations generally agree extremely well
with optical measurements, resembling, effectively, “nu-
merical experiments” (in contrast to e.g. electronic struc-
ture calculations that typically exploit physical
approximations, i.e. not merely a truncated basis, to
overcome the computational challenges posed by many-
body electron–electron interactions). This makes photonic
systems ideal test beds for exploring the applications of
data-driven techniques in realistic physical systems; and
for developing new ML techniques for the natural sciences
in general.

Already, several studies have explored the application
of ML techniques to photonics: neural networks have been
used to accurately predict optical scattering by multilayer
nanoparticles [26], far- [27] and near-field [28] spectral
response of plasmonic nanostructures, topological prop-
erties [29–31], and transmission spectra of dielectric met-
amaterials andmetasurfaces [32–35]. There has also been a
growing interest in the study of generative models [36–38],
i.e. models that learn the underlying distribution of the
data rather than simply “discriminating” the target values
given a certain input, aiming to complement more con-
ventional techniques of optimization and inverse design,
such as via gradient-based [39, 40] or evolutionary
methods [41, 42]. While trained neural networks can also
accelerate traditional inverse design by affording a cheap
gradient calculation via backpropagation [26] or simply a
cheap evaluation [32], multiple iterations are often needed
to find a good candidate, and backpropagating costs
through a large network can be computationally chal-
lenging. Generative models [31] offer an alternative
approach that sidesteps these challenges and additionally
provides the flexibility of choosing among multiple suit-
able design candidates.

Here, we report several examples of data-driven ML
techniques applied to photonic crystals (PhCs) [43, 44],
that is, periodic wavelength-scale structures of dielectric
material. We exploit the maturity of conventional
computational approaches for PhCs to generate a data set
suitable for supervised learning of 20,000 distinct two-
dimensional (2D) PhCs. As a first application of these data
set, we train a convolution neural network to perform
band structure prediction. The trained network is highly
accurate (mean test error of ∼ 0.6%) and, once trained,
orders of magnitude faster than conventional theory-
based approaches. Following this, we explore two appli-
cations of generative models for data-driven inverse
design of PhCs with a large band gap. In both cases, we
find that a high-fidelity generative model can be trained
using just ∼1 000 data samples. Our results establish PhCs
as a natural test bed for ML techniques applied to scien-
tific problems and demonstrate that both forward and
inverse problems in PhC-design are amenable to data-
driven approaches.

2 Methods and results

2.1 Photonic crystal data set

PhCsare characterizedby aperiodically varyingpermittivity
ε(r), and the design domain is consequently restricted to a
single nontrivial unit cellΩwhose tilingmakes up the PhC’s
structure (Figure 1A). For simplicity and concreteness, we
restrict our attention to 2D square lattices with two material
components. Each material occupies a sub-region Ωi of Ω,
such that Ω1 ∪ Ω2 � Ω, with a resulting “two-tone” permit-

tivity profile ε(r) � { ε1,  r  ∈  Ω1

ε2,  r  ∈  Ω2
. For lossless and isotropic

materials, εi (as well as the PhC’s allowed eigenfrequencies)
are real quantities. As a result, each PhC is effectively
characterized by a single “gray-scale image” of ε(r). We
generated 20,000 such two-tone, square unit cells. The two
disjoint regions Ωi were defined by their boundary region
(Figure 1A), which in turn was procedurally generated by
casting 2–8 random ellipses sequentially near each other’s
periphery, then spanning, smoothing, and centering an
enclosing hull, and finally randomly scaling and orienting
the resulting boundary. This produces unit cells that are
relatively simple geometrically, host just a single inclusion,
have no strongly divergent feature scales, and so exemplify
realistically fabricable design candidates. We note that
stricter constraints could be imposed to align more closely
with experimental capabilities (minimum feature sizes
could e.g. be ensured by post-processing generated in-
clusions with standard threshold projection techniques
from topology optimization [45, 46]). Nevertheless, to retain
a sufficiently varied training set we do not pursue such
additional constraints here [47]. The permittivities εi were
each drawn uniformly from the range [1, 10], roughly
spanning the range attainable in transparent materials in
the visible spectrum (e.g. at a wavelength of 700 nm, the
permittivity of air, silicon nitride, and silicon carbide is
approximately 1,4.1, and 6.8, respectively).

For each unit cell, we computed the PhC band struc-
ture of the lowest six bands using the free MIT Photonics
Bands (MPB) software [48] using 64 × 64 plane waves
(equivalent, effectively, to a 64 × 64 spatial resolution).
Eachunit cell takes∼2min on a single core of a 1.6 GHz Core
i5-8250U CPU. The calculations are highly converged and



Figure 1: Photonic crystal data set. We generated a data set of
20,000 square 2D PhC unit cells, each consisting of a smooth,
centered inclusion of permittivity ε1 in a background permittivity ε2
with εi ∈ [1, 10]. (A) Several representative unit cells and the BZ grid-
sampling used in the calculation of band structures. (B) The TM and
TE band structures of the PhC highlighted in orange in (A). (C) The
generated unit cells predominately feature inclusions occupying
less than half the unit cell, as illustrated by a histogramming of the
relative inclusion areas across the data set. (D) TM band gaps
between bands 1 and 2 consequently occur much more frequently
than TE gaps, as TE gaps mainly arise in “filamentory” networks,
corresponding to large relative inclusion areas.
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accurate: the mean fractional deviation per band between
calculations at resolutions of 64 × 64 and 32 × 32 is ∼ 0.1‰,
averaged over all unit cells. Figure 1B shows a set of
example band structures, split into the transversemagnetic
and electric (TM and TE) polarizations: it consists of the set
of eigen frequencies ωnk indexed over band numbers
n = 1, 2,…, 6 and wave vectors k restricted to the Brillouin
zone (BZ). For a square lattice of (arbitrary) side length a,
the BZ is [−π/a,π/a) × [−π/a,π/a). Since the generated
unit cells generically have no exact spatial symmetries, the
band structures cannot exhibit any stable band-crossings,
allowing a simple sorting of bands by their frequency
alone, i.e. ωnk < ωn+1,k.

The resulting data set contains as input pixelized
permittivity profiles (in either 32 × 32 or 64 × 64 resolu-
tion) and as output the computed band structure (with
the BZ sampled on a 23 × 23 Γ-centered Monkhorst–Pack
grid, as in Figure 1A). In addition, we computed the band
gap Δω12 ≡min ω2k −max ω1k between bands 1 and 2.
Since the generated unit cells predominately feature
central inclusions with a relative area less than 50%
(Figure 1C), TM band gaps are significantly more abun-
dant than TE band gaps (Figure. 1D). In our experiments
with generative models, we restricted the data set to
those elements that host a substantial band gap, defined
heuristically as a relative band gap Δω12/ω12 greater than

5% (with mid-gap frequency ω12 ≡ 1
2min ω2k + 1

2max ω1k).

Since the TE band structures host only very few such
examples (48 with a non-zero band gap and 10 with a
band gap ≥ 5%, out of 20,000 examples), we confined
our experiments with generative models to the TM
polarization only.
2.2 Band prediction

A natural question is whether neural networks can be used
in lieu of traditional theory-driven tools for themodeling of
PhCs, e.g. to predict a PhC’s band structure. To answer this,
we adopted a supervised learning approach and trained
two neural networks to reproduce the TM and TE band
structures, respectively, taking as input a 32 × 32-dis-
cretized unit cell and producing as output the band struc-
ture across the 23 × 23-discretized BZ for the first six bands
(Figure 2). Effectively, this is a regression problem where a
large input space (32 × 32 � 1024 parameters) is mapped to
a large output space (23 × 23 × 6 � 3174 parameters).

The network consists of two main components:
encoder and decoder (Figure 2A). Conceptually, the
encoder is tasked with building an abstract representation
of the PhC’s unit cell ε(r) that spans a lower-dimensional
so-called feature (or latent) space. The decoder,
conversely, is tasked with reconstructing from this feature
vector the band structure of the input PhC. In practice, we



Figure 2: Band prediction with convolutional neural networks. (A)
Network architecture showing the convolutional encoder and fully-
connected decoder (described in detail in themain text). Numbers in
red indicate the data size after every network layer. (B–C) Example
applications of the trained band-prediction network on test set unit
cells in both TM and TE polarizations (green markers, network
predictions; surfaces, reference MPB calculations). The chosen unit
cells represent worst-case examples due to their large permittivity
contrast. (D–E) The relative deviation between network predictions
and reference calculations. The relative error is typically very small,
on the order of ≲ 2%.
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implement and train the network using the popular
PyTorch framework [49]. Training is accomplished by
minimizing the mean square error between the training

dataωnk andnetwork outputωNN
nk across n,k, and the entire

training set (the cost function) using adaptive gradient
descent optimization (RMSprop [50]) with an adaptive
learning rate scheduler. We implement the encoder using
three convolutional layers, each of (zero-padded) 11 × 11
kernels, followed by two fully-connected layers, essen-
tially mapping the 32 × 32 input space into a linear 64-
dimensional feature space. The convolutional layers were
subjected tomax-pooling and increasing channel depths to
collapse the 2D input into a simple 1D vector that could be
directly fed to the fully-connected layers of the encoder.
The decoder was implemented with six feed-forward net-
works, each consisting of five fully-connected layers that
were separately optimized for each band. All layers were
followed by ReLU activations and batch normalization [51]
was used for the convolutional layers. Our implementation
(with optimized hyper-parameters) is available online, see
Ref. 52, and summarized in Figure 2A.

We followed the standard training–validation–test
approach and split the data set into training, validation,
and test sets (in 70, 15, and 15% proportions). The training
set was used to update the network’s weights, the valida-
tion set to evaluate training convergence and select hyper-
parameters, and the test set to determine the network’s
ability to generalize to new data (i.e. assess eventual
network performance). We performed a simple grid-search
to determine hyper-parameters, searching across kernel
sizes of convolution layers ∈ [5, 7, 9, 11], batch sizes

∈[32, 64, 128], initial learning rates ∈[10−5, 10−4, 10−3], and
total number of training epochs ∈ [20, 30,40] (optimal
hyper-parameters indicated in boldface). In addition, we
searched across several network architectures consisting of
varying convolution layer channel depths to arrive at the
optimal configuration shown in Figure 2A. Application of
the optimally tuned network on two examples from the test
set is shown in Figure 2B–E, in absolute (Figure 2B–C) and
relative scales (Figure 2D–E). Both examples are charac-
terized by a large permittivity contrast between inclusion
and background and consequently reflect extremal ele-
ments in the data set, whose band structures deviate sub-
stantially from the trivial empty-lattice approximation.
Averaged across the entire validation and test sets, both the
band-specific and the band-averaged relative mean errors

meank(
∣∣∣∣ωNN

nk − ωnk
∣∣∣∣/ωnk) are generally very low, on the

order of 0.5%, as shown in Table 1. We conclude that a
simple convolution neural network can predict the band



Figure 3: Generative adversarial network. Through an adversarial
game between a generative (G) and a discriminative (D) network,
new synthetic examples (fake) of 2D unit cells with a TM band gap
can be generated from a genuine data set (real).

Table : Neural network performance. Mean relative error,
meank

∣∣∣∣ωNN
nk − ωnk

∣∣∣∣/ωnk, of the trained TE and TM networks on vali-
dation and test samples, shown for each band separately as well as
band-averaged ( – ).

Sample Polarization Band index n (‰ error)

       – 

Validation TM . . . . . . .
TE . . . . . . .

Test TM . . . . . . .
TE . . . . . . .
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structures of PhCs with very high accuracy and generalizes
excellently to examples not seen during training. While we
have confined our attention to 2D square lattices, this
conclusion appears likely to apply generally across
different lattice types and dimensionalities.

It is worth noting that while generation of a suitable
data set—and, to a lesser extent, network training (taking
∼3 min for fixed hyper-parameters on an Nvidia 1080 Ti
GPU)—requires substantial computing resources, once
trained, a neural network can predict band structures or-
ders of magnitude faster than conventional theory-driven
simulations (network evaluation of a single input takes
≈ 0.02 s on an Nvidia 1080 Ti GPU). While these gains are
not sufficiently attractive tomerit the training of regression
networks for one- or few-off calculations, they can be
relevant in inverse-design problems [26, 27] or high-
throughput searches [53], where a very large number of
distinct system configurations must be considered.
2.3 Generative adversarial networks

While ML techniques for classification and regression
problems (such as band structure prediction) are naturally
complementary to traditional theory-based approaches to
forward problems, the field of generative modeling stands
to complement conventional techniques of optimization
and inverse design. Rather than learning a mapping from
input to output data (e.g. from the unit cell to band struc-
ture), generative models generally seek to learn the statis-
tical distribution of data samples. Once learned, many new
elements can thenbedrawn from this distribution—ahighly
attractive option for optimization problems characterized
by a non-unique solution space (in sharp contrast to con-
ventional gradient-based approaches where the retrieval of
diverse design candidates can be nontrivial).

Generative adversarial networks (GANs) have become
a singularly prominent direction in generative models [54],
due to their ability to seemingly generalize “creatively”
beyond training data, with applications spanning e.g.
autonomous driving systems [55], natural image synthesis
[56], and anomaly detection [57]. The training of GANs
mimics an adversarial game between two networks
(Figure 3): while one network, the discriminator, is tasked
with decidingwhether a given input belongs to the training
data (“real”) or not (“fake”); the other, the generator, is
tasked with producing (from an input vector sampled from
a predefined probabilistic feature space) candidates that
fool the discriminator. During training, their joint cost
function—whose contributions are adversarial in nature,
i.e. generally opposing—is optimized.

We explored the use of GANs for synthesizing new
candidate unit cells that host a substantial TM band gap. To
doso,weextracted the 585unit cellswithΔω12/ω12 ≥ 5% from
the data set for use as training data. We tested three different
GAN-variants [58]: a conventional GAN [53], a least squares
GAN (LSGAN) [59], andDeep Regret Analytic GAN (DRAGAN)
[60], each distinguished essentially by their respective
generator and discriminator cost functions [61]. In each case,
we adapted standard off-the-shelf implementations [62] to
take a single-channel, 64 × 64 pixelized ε(r) profile as
trainingdata. Training across 400 epochs took on the order of
5–10 min for each GAN on an Nvidia 1080 Ti GPU.

Figure 4A illustrates the improvement during the
training of each GAN-variant’s ability to generate
convincing unit cells that exhibit the desired character-
istics (i.e. well-defined, high-contrast, two-tone in-
clusions). We also evaluated the models’ performance
relative to the design goal of exhibiting a substantial
band gap by computing the band gap sizes of the
generated unit cells with MPB (Figure 4B). Concretely, we
trained 10 distinct networks for each GAN-variant
(distinguished only by network initialization), outputting
at each epoch 16 generated unit cells. From these sam-
ples, we evaluated a notion of “generation fidelity”,
defined as the relative fraction of generated unit cells that



Figure 4: GAN, LSGAN, and DRAGAN for
generation of unit cells with substantial TM
band gaps. (A) Themapping of fixed feature
vectors to generated unit cells during
training. Note the differing epoch steps and
ranges for DRAGAN versus GAN and LSGAN.
(B) Fidelity of generated unit cells (the
fraction hosting a band gap ≥5%). For GAN
and LSGAN, fidelity is averaged over 16
distinct feature vectors and 10 training runs
(uncertainty across training runs is
indicated by shaded regions). Only a single
DRAGAN training run was successful
(averaged over 16 outputs). (C–D)
Examples of generated unit cells at
selected epochs (indicated by matching
markers in B). GAN and LSGAN produce
more well-defined but lower-fidelity unit
cells at later epochs (text-insets give
Δω12/ω̄12 evaluated with MPB; dashed
borders highlight cases where
Δω12/ω̄12 < 5%).
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indeed exhibit a band gap ≥5%. Both metrics—visual
“quality” and fidelity—exhibit much the same evolution:
initially, performance is poor, reflecting essentially
randomly initialized networks; then, within a few
epochs, performance improves dramatically; and finally,
performance slowly deteriorates, typical of the saturation
problem [63]. While GAN and LSGAN achieve convincing
performance within ∼50 epochs, DRAGAN takes signifi-
cantly longer, apparently passing through a phase of
“fractured” inclusions. Further, across our 10 training
experiments, we identified only a single successful
DRAGAN trial (others not shown).

Figure 4C shows 16 examples of generated unit cells for
each GAN-variant, evaluated at epochs and training runs of
100% fidelity. The generative models have clearly “learned”
the key elements necessary to host a TMband gap, namely an
inclusion of high permittivity embedded in a low-permittivity
background [43]. Interestingly, although the fidelity of GAN
and LSGAN generally decreases after peaks around range
5070 epochs, the visual quality—especially the well-defin-
edness of inclusion boundaries—improves at higher epochs
as shown in Figure 4D. The apparent cost ofmoving to higher
epochs appear to be an increase in low-contrast examples
without (or with smaller) band gaps. More generally, both
visual quality and fidelity alike could likely be improved by
simply enlarging the training set’s size. Finally, we note that
regularization and filtering techniques from topology opti-
mization [45, 46] couldbe leveraged to further reducenoise or
ensure minimum feature sizes in the generated designs,
either as a post-processing step or during training.
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2.4 Image-to-image translation

Image-to-image translation can be viewed as a subset of
generative modeling concerned with translating (i.e.
mapping) between distinct representations of images.
Effectively, this translation can often be viewed simply as
implanting the “style” or characteristics of a given repre-
sentation A onto another B; say, mapping from an outline,
or even a sketch, to a photorealistic representation (e.g. of
cats [64]). Following the introduction of the pix2pix soft-
ware [65], conditional GANs [66] have emerged as a
powerful tool to achieve this translation. The underlying
principle is illustrated in Figure 5A: the generator of a
conditional GAN takes, in addition to the standard random
feature vector x, a “conditional input” y (of representation
A) from which a fake output G(x, y) is generated—the
discriminator, conversely, seeks to distinguish between
Figure 5: Image-to-image translation of photonic features. (A)
Conditional GANs, as implemented e.g. by pix2pix [65], facilitate
image-to-image translation by augmenting a conventional GAN
(Figure 3) with a conditional input. (B) Using pix2pix, we trained a
model to translate a discretized inclusion outline (black borders) to
a permittivity profile (red borders) hosting a TM band gap. The
permittivity contrast Δε ≡max ϵ(r) −min ϵ(r) and the relative band
gap Δω12/ω12, evaluated with MPB, are indicated below each design
(dashed borders highlight cases where Δω12/ω12 < 5%).
genuine pairings of y and real output z (of representationB)
from faked pairings.

A natural application of image-to-image translation,
and pix2pix specifically, for photonics is “guided inverse
design”, i.e. inverse design subject to conditional input.
Figure 5B illustrates one such application (using a PyTorch
implementation of pix2pix [65, 67, 68]): by taking again
the set of unit cells with a TM band gap ≥5% and choosing
as conditional input the corresponding inclusion outlines,
we can learn a mapping from outlines to permittivity pro-
files supporting a TMband gap.We trained themodel using
just 256 samples (each of 64 × 64 pixels) over 200 epochs
(requiring less than 1 h on an Nvidia 1080 Ti GPU). We
tested the trained model on conditional input of several
distinct shapes (heart and five- and four-pointed stars) and
scales. The trained model successfully translates each
large inclusion to a permittivity profile with a TM band
gap ≥5%. Notably, this translation is successful—and
maintains the outline’s shape—even though the training
data does not contain examples that resemble the chosen
outlines. Further, when the scale of a shape is reduced, we
observe that the contrast in the generated profile is
increased; in exact agreement with the basic design-prin-
ciple suggested by perturbation theory [43]. While the
small five- and four-pointed stars translations do not ach-
ieve a TM band gap ≥5%, it is clear that the design
approach (i.e. increasing contrast) is valid. Indeed, for
sufficiently small or irregular inclusions, designs with
ε(r) ∈ [1, 10] and a ≥5% band gap may not exist. We can
explore this latter point by feeding the trainedmodel a stick
too narrow to host a TM band gap (Figure 5B, bottom). We
sampled three generated designs (distinct feature vectors):
in each case, the design “breaks out” of the outline and
maximizes contrast. The resulting rupture varies slightly in
extent and so hosts differently sized band gaps, though in
each case ≤5%.
3 Conclusions

In conclusion, we have explored predictive and generative
models for data-driven approaches to PhC analysis and
design. Within predictive modeling, we demonstrated that
convolutional neural networks can be trained to predict the
band structure of a square 2D PhCs with high accuracy and
with orders of magnitude speedup across both TE and TM
polarizations. Within generative modeling, we demon-
strated that standard techniques, namely GANs and con-
ditional GANs, can be readily adapted for high-throughput
unguided and guided inverse design; here, for the inverse
design of PhCswith sizable TMband gaps. A key advantage
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of data-driven approaches to inverse design is that other-
wise hard-to-quantify constraints, such as notions of fab-
ricability, can be encoded implicitly by a representative
selection of training data (here, smooth two-tone in-
clusions). Such data-driven approaches to inverse design
could also make appealing alternatives to traditional in-
verse design tools in scenarios where a large number of
design candidates are desired for a fixed design goal.
Encouragingly, high-fidelity generative models could be
trained even with relatively modest data quantities; here,
just ∼ 250 − 600 unit cells.

We note that the relative ease with which standard ML
techniques can be adapted and applied to PhCs, as shown
here, suggests a promising application space for data-
driven approaches in photonics more generally. Espe-
cially within generative modeling, a large suite of ML
techniques exists that point to several opportunities for
data-driven inverse photonic design, some of which have
already been explored: among them, variational auto-
encoders [69] exemplify a natural alternative [70] to GANs
for photonic inverse design [71, 72], as does the related
approach of bidirectional neural networks [73, 74].
Further, the ML application-space for PhCs extends
beyond the periodic settings considered here: for instance,
both isolated and aperiodic systems, such as PhC defect
cavities and quasiperiodic PhCs, may be explored with
similar ML techniques, e.g. by an appropriate augmenta-
tion of the input space. Even with this outlook, the appeal
of data-driven computational photonics—and science
more broadly—will remain closely correlated with the
required quantities of data needed to train networks, and
the ease with which it may be generated. Given the per-
formance and maturity of state-of-the-art theory-driven
methods for PhCs, we believe PhCs will make an ideal test
bed to explore and develop new ML techniques, e.g. ideas
from transfer- and meta-learning, for photonics and the
natural sciences.
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