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ABSTRACT: We present a global optimizer, based on a
conditional generative neural network, which can output
ensembles of highly efficient topology-optimized metasurfaces
operating across a range of parameters. A key feature of the
network is that it initially generates a distribution of devices
that broadly samples the design space and then shifts and
refines this distribution toward favorable design space regions
over the course of optimization. Training is performed by
calculating the forward and adjoint electromagnetic simu-
lations of outputted devices and using the subsequent
efficiency gradients for backpropagation. With metagratings operating across a range of wavelengths and angles as a model
system, we show that devices produced from the trained generative network have efficiencies comparable to or better than the
best devices produced by adjoint-based topology optimization, while requiring less computational cost. Our reframing of
adjoint-based optimization to the training of a generative neural network applies generally to physical systems that can utilize
gradients to improve performance.

KEYWORDS: Global optimization, generative neural networks, machine learning, adjoint variable method, dielectric metasurfaces,
metagrating

Metasurfaces are subwavelength-structured artificial
media that can shape and localize electromagnetic

waves in unique ways.1−3 These technologies are useful in
imaging,4−6 sensing,7 and optical information processing
applications,8 among others, and can operate at wavelengths
spanning the ultraviolet to radio frequencies.9−11 A central
research thrust in the field has been the identification of
effective and computationally efficient ways to design high-
performance metasurfaces, given a desired electromagnetic
response.12 In this aim, inverse design based on optimization
has shown great promise. These methods range from heuristic
swarm13 and genetic algorithms14,15 to adjoint-based topology
optimization,16,17 and they have led to metagratings,18,19

metasurfaces,20−22 and other nanophotonic devices23−25 with
exceptional performance. However, they are computationally
costly, making it difficult and even intractable to scale these
methods to large ensembles of devices or large area devices.
To address this computational roadblock, concepts in

machine learning that augment the device design process
have been investigated.26−28 In the current manifestations of
machine learning-enabled photonics design, a training set of
device geometries and their associated optical properties is first
produced. These data are then used to train a neural network,
which “learns” the relationship between device geometry and
optical response. A properly trained network can then produce
new device designs beyond the training data set at low
computational cost. To date, a range of machine learning
concepts, including deep neural networks with fully connected

networks, convolutional networks, and generative adversarial
networks (GANs), have been proposed.29−31

These initial demonstrations show that neural networks have
the potential to learn the relationship between structural
geometry and optical response, but they also highlight key
challenges to the approach.26,29 One challenge is that the
computational cost of creating the training data set itself can be
immense. Networks for structures described by even a few
geometric parameters require tens to hundreds of thousands of
devices for training. GAN-based design strategies have the
potential to work with relatively less training data,31 but these
data are preoptimized and are computationally costly to
produce. Another challenge is that many nanophotonic devices
have complex geometries and reside in a high dimensional
design space, making it difficult for even the best networks to
learn the nuanced relationship between device geometry and
response. New approaches that extend beyond standard
machine learning approaches are required for neural networks
to be practically useful in the electromagnetics design process.
In this Letter, we introduce a new concept in electro-

magnetic device design by incorporating adjoint variable
calculations directly into generative neural networks. Termed
global topology optimization networks (GLOnets), our
approach is capable of generating high-performance top-
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ology-optimized devices spanning a range of operating
parameters with modest computational cost. GLOnets work
by initially evaluating a distribution of devices spanning the
design space and then continuously optimizing this device
distribution until it converges to a cluster of high-efficiency
devices. Physics-based gradients are utilized for backpropaga-
tion to ensure that network training is directly tied with
enhancing device efficiency. Unlike other manifestations of
machine learning-enabled photonics design, our approach does
not use or require a training set of known devices but instead
learns the physical relationship between device geometry and
response directly through electromagnetic simulations. We
note that our network performs a global search for the globally
optimal device within the design space, but it does not
guarantee that the final generated devices are globally optimal.
In general, it is not possible to guarantee globally optimal
solutions in nonconvex optimization problems, including our
problem.
Methods. For this study, we will focus on conditional

GLOnets that have wavelength and deflection angle as inputs,
and we will simultaneously design an ensemble of silicon
metagratings that operate across a range of wavelengths and
deflection angles. This concept builds on our analysis of
unconditional GLOnets,32 which can optimize only a single
device in a training session. Our metagratings consist of silicon
nanoridges and deflect normally incident light to the +1
diffraction order (Figure 1A). The thickness of the gratings is
fixed to be 325 nm and the incident light is TM-polarized. For
each device, the metagrating period is subdivided into N = 256
segments and each segment possesses a refractive index value
between silicon and air. These refractive index values are the

design variable in our problem and are specified as n (a 1 × N
vector). Index values in the vector are normalized to a range of
−1, which represents air, and +1, which represents silicon. The
optimization objective is to maximize the deflection efficiency
of the metagrating given an operating wavelength ranging from
600 to 1300 nm and an outgoing angle ranging from 40 to 80°.
A schematic of our conditional GLOnet is presented in

Figure 1B. The input is the operating wavelength λ, the desired
outgoing angle θ, and an N-dimensional noise vector z, which
is a uniformly distributed random variable. The output is the
refractive index profile of the device, n. The weights of the
neurons are parametrized as w. The generator, conditioned on
(λ, θ), maps different z onto different device instances: n =
Gw(z; λ, θ). The ensemble of all possible z and corresponding
n, given (λ, θ) as inputs, are denoted as {z} and {n| λ, θ},
respectively.
An important feature of our use of neural networks is that

we can readily incorporate layers of neurons at the output of
the network that can perform mathematical operations on the
outputted device. In our case, we set the last layer of the
generator to be a Gaussian filter, which eliminates small, pixel-
level features (Figure S2) that are impractical to fabricate. The
only constraint with these mathematical operations is that they
need to be differentiable, so that they support backpropagation
during network training.
Proper network initialization is required to ensure that the

network at the start of training maps the noise vectors {z} to
the full design space. We take two steps to initialize our
network. First, we randomly assign the weights in the network
with small values,33 which sets the outputs of our last
deconvolution layer to be close to 0. Second, we directly add

Figure 1. Global optimization based on a generative neural network. (A) Schematic of a silicon metagrating that deflects normally incident TM-
polarized light to the outgoing angle θ. The metagrating consists of 325 nm thick Si ridges in air on a SiO2 substrate. In the generative neural
network, the device is specified by a 1 × 256 vector, n, which represents the refractive index profile of one period of the grating. (B) Schematic of
the conditional GLOnet for metagrating generation. The generator is built on fully connected layers (FC), deconvolution layers (dconv), and a
Gaussian filter. An identity shortcut connection is also used and adds z to the output of last deconvolution layer. The input is the device wavelength
λ, deflection angle is θ, a 256-dimensional noise vector of z, and the output is the device vector n. During each iteration of training, a batch of
devices is generated and efficiency gradients g are calculated for each device using forward and adjoint electromagnetic simulations. These gradients
are backpropagated through the network to update the weights of the neurons.
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the noise vector z to the output of last deconvolution layer
using an “identity shortcut”.34 To facilitate this second step, it
is important that the dimensionality of z matches with n. In
combining these two initialization steps, we get that the initial
ensemble of all possible generated device instances {n| λ, θ}
has approximately the same distribution as the ensemble of
noise vectors {z}, and it therefore spans the full device design
space.
During network training, the objective is to iteratively

optimize w to maximize the efficiencies of {n| λ, θ} for all
possible (λ, θ) within the target range. In other words, we aim
to maximize the probability of generating high-efficiency
devices. An ideal, perfectly trained network would map {z}
to {n| λ, θ} containing only the globally optimized device. To
improve w with each iteration, a batch of M devices,

{ | = }m Mn 1, 2, ...,m( ) , is initially generated by sampling z
from the noise vector distribution, λ from the target
wavelength range, and θ from the target outgoing angle
range. Our loss function for the conditional generator is as
follows:
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For the mth device, the gradients of efficiency with respect to
n(m), denoted by g(m), specifies how the device refractive
indices can be modified to improve the efficiencies. These
efficiency gradients g(m) are calculated using the adjoint
variables method19,24 and are calculated from electric and
magnetic field values taken from forward and adjoint
electromagnetic simulations. The gradients we use in this
work are taken from those we previously developed for the
topology optimization of metagratings.16,17,19,35

The term Effmax(λ
(m), θ(m)) is the theoretical maximum

efficiency for each wavelength and angle pair. In practice,
Effmax(λ

(m), θ(m)) is unknown, as it represents the efficiencies of
the globally optimal devices for which we are trying to solve.
Over the course of network training, we estimate Effmax(λ

(m),
θ(m)) to be the highest efficiency calculated from the batches of
generated devices. Eff(m) is the efficiency of the mth device and
is directly calculated with the forward electromagnetic

Figure 2. Comparison between adjoint-based topology optimization and conditional GLOnet optimization. (A) Adjoint-based topology
optimization uses efficiency gradients from an individual device to improve its performance within the local design space. A visualization of the
device in a 2D representation of the design space illustrates that from iteration k to k + 1, the device moves incrementally to a nearby local maxima,
indicated by its local gradient. (B) Conditional GLOnets use a neural network to map random noise to a distribution of devices. Gradients of
efficiency, averaged over a batch of devices, are backpropagated to update the weights of the neurons and deconvolution kernels, which improves
the average efficiency of the generated device distribution. A visualization of the device distribution illustrates that from iteration k to k + 1, the
efficiency gradients from individual devices (black arrows) are used to collectively bias the device distribution toward high-efficiency regions of the
design space.
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simulation. The expression
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a bias term that preferentially weighs higher efficiency devices
during network training and reduces the impact of low
efficiency devices that are potentially trapped in undesirable
local optima. The magnitude of this efficiency biasing term can
be tuned with the hyperparameter σ. A detailed derivation of
the loss function from first-principles can be found elsewhere32

and in the Supporting Information.
The gradient of the loss function with respect to the indices

for the mth device is
i
k
jjj

y
{
zzz= − λ θ

σ
∂

∂
− gexpL

M
m

n

1 Eff Eff ( , ) ( )
m

m m m

( )

( )
max

( ) ( )

.

In this form, minimizing the loss function L is equivalent to
maximizing the device efficiencies in each batch. To train the
network and update w, we use backpropagation to calculate
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each iteration.

To ensure that the generated devices are binary (i.e., all
silicon or air), we add −|n(m)|·(2 − |n(m)|) as a regularization
term to the loss function. This term reaches a minimum when |
n(m)| = 1 and the device segments are either silicon or air. This
binarization condition serves as a design constraint that limits
metagrating efficiency, as the efficiency enhancement term (eq
2) favors grayscale patterns. To balance binarization with
efficiency enhancement in the loss function, we include the
tunable hyperparameter β. Our final expression for the loss
function is:
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We can view conditional GLOnets, in which the nonlinear
mapping between (z, λ, θ) and device layout is iteratively
improved using physics-driven gradients, as a reframing of the
adjoint-based optimization process. We want to be clear,
however, that conditional GLOnets are qualitatively different
from adjoint-based topology optimization. To conceptualize
these differences, we discuss each optimization strategy in
more detail. Adjoint-based topology optimization applies to a
single device and is a local optimizer. The algorithm takes an
initial dielectric distribution and enhances its efficiency by
adjusting its refractive indices at each segment using gradient
ascent (Figure 2A). This method is performed iteratively until
the device reaches a local maximum in the design space. The
performance of the final device strongly depends on the choice
of initial dielectric distribution.36 More of the design space can
be explored with this approach by performing topology
optimization on many devices, each with different initial
dielectric distributions. Devices that happen to have initial
dielectric distributions in favorable design space regions will
become high performing.
Local optimizers are an effective tool to designing a wide

range of photonic devices. However, their usage is accom-
panied by a number of caveats. First, they require significant
computational resources. Hundreds of electromagnetic simu-
lations are required to topology optimize a single device, and
for multifunctional devices this number of simulations can
scale to very large numbers. Second, the sampling of the design
space is limited to the total number of devices being optimized.
For complex devices described by a very high-dimensional

design space, the required sampling may be extremely large.
Third, devices are optimized independently of one another,
and gradient information from one device does not impact
other devices. Fourth, multiple topology optimizations are
required to produce different devices with different operating
parameters.
Conditional GLOnets are qualitatively different in that they

optimize an entire distribution of device instances, as mediated
by the noise vector z. The starting point of each conditional
GLOnet iteration is similar to adjoint optimization and
involves the calculation of efficiency gradients for individual
devices using the adjoint method. However, the difference
arises when these gradients are backpropagated into the
network. Consider a single device defined by inputs (z, λ, θ)
that produces a gradient g for network backpropagation: all the
weights in the network get updated, thereby modifying the
complete mapping of {z} to {n| λ, θ} (Figure 2B). This points
to the presence of crosstalk between all device instances during
the network learning process. Crosstalk can be useful when
devices in promising parts of the design space bias the overall
distribution of device instances to these regions. Regulation of
the amount of crosstalk between devices, which is important to
stabilizing the optimization method, is achieved from the
nonlinearity intrinsic to the neural network itself.
Another advantage of our conditional GLOnet is that it is

effective at globally surveying the design space, enhancing the
probability that optimal regions of the design space are
sampled and exploited. Such global surveying is made possible
in part because the initial network maps {z} onto the full
device design space, and in part because different (z, λ, θ) are
sampled each iteration, leading to the cumulative sampling of
different regions of the design space during training. Condi-
tional GLOnets also enable the simultaneous optimization of
devices designed for operating parameters that span a broad
range of values, over a single network training session. For our
metagratings, these parameters are the outgoing angle and
wavelength, but they can generally involve any combination of
design parameters in the problem including device thickness,
refractive index, or light polarization, among others. This
codesign leads to a substantial reduction in computation time
per device, which is because these devices operate with related
physics and strongly benefit from crosstalk from the network
training process.

Results and Discussion. To benchmark devices designed
from our conditional GLOnet, we first perform adjoint-based
topology optimization on metagratings operating across our
desired range of wavelengths and angles. Details pertaining to
this calculation can be found elsewhere.27,28 These devices
operate across a wavelength range between 600 and 1300 nm
in increments of 50 nm and across a deflection angle range
between 40 and 80° in increments of 5°. For each wavelength
and angle pair, we optimize 500 devices, each with random
grayscale patterns serving as initial dielectric distributions. A
total of 200 iterations is performed for each optimization, and
the deflection efficiencies of the optimized devices are
calculated using a rigorous coupled-wave analysis (RCWA)
solver.37 The efficiencies of the best device for each wavelength
and angle pair are plotted in Figure 3A.
With our fully trained conditional GLOnet, we generate 500

devices for each wavelength and angle pair by fixing (λ, θ) at
the network input and sampling z 500 times. Details pertaining
to the architecture and training parameters are in the
Supporting Information. The efficiencies of the best devices
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for the same wavelengths and deflection angles displayed in
Figure 3A are plotted in Figure 3B. These efficiency values
indicate that the best devices from the conditional GLOnet
compare well with or are better than the best devices from
adjoint-based optimization. Statistically, 75% of devices from
the conditional GLOnet have efficiencies higher than those
from adjoint-based optimization, and 92% of devices from the
conditional GLOnet have efficiencies higher than or within 5%
those from adjoint-based optimization. Although our condi-
tional GLOnet performs well for most wavelength and angle
values, it does not optimally perform in certain regimes, such
as that at short wavelengths and small deflection angles. We
hypothesize that these nonidealities can be improved with
further refinement of the network architecture and training
process, and this will be the topic of future study.
The efficiency histograms from adjoint-based topology

optimization and the conditional GLOnet for select wave-
length and angle pairs are displayed in Figure 3C. A more
complete set of histograms is in Figure S2. The histograms
show that adjoint-based topology optimization generates
devices with highly variable efficiencies. This indicates that
the initial dielectric distributions of these devices broadly span
the design space, and with each device being locally optimized,
the result is a set of devices with a wide range of layouts and
efficiencies. The conditional GLOnet-generated devices, on the
other hand, tend to have more devices clustered at the high-
efficiency end of the distribution. An examination of the
layouts of these devices indicate that many have very similar
geometries (Figure S3). This trend is consistent with the

objective of the conditional GLOnet, which is to optimize the
efficiency of {n| λ, θ}.
To help visualize the device optimization process with our

conditional GLOnet, we show how the distribution of devices
in the design space, together with its corresponding efficiency
histogram, evolves over the course of network training. The
devices in this example all operate at λ = 900 nm and θ = 60°,
and 100 devices are randomly generated during each iteration
of training for visualization. The high-dimensional design space
is visualized by performing a principle component analysis on
the 500 binary metagratings with λ = 900 nm and θ = 60°
produced by adjoint-based optimization (used for Figure 3A)
and then reducing the dimensionality of the space to two
dimensions. The results are displayed in Figure 4 and Movie
S1. Initially, the distribution of generated devices is spread
broadly across the design space and the efficiency histogram
spans a wide range of values with most devices exhibiting low
to modest efficiencies. As network training progresses, the
distribution of generated devices more tightly clusters and the
efficiency histogram narrows at high-efficiency values. By the
1000 iteration mark, the generated devices have very high
efficiencies and the histogram is strongly skewed toward high-
efficiency values. A similar analysis for devices operating with
other wavelength and angle combinations is presented in
Figure S4.
An examination of total computation time indicates that our

conditional GLOnet is computationally efficient at simulta-
neously optimizing a broad range of devices operating at
different wavelengths and angles. A detailed analysis, presented

Figure 3. Performance comparison of adjoint-based topology optimization and conditional GLOnet optimization. (A) Plot of metagrating
efficiency for devices operating with different wavelength and angle values, designed using adjoint-based topology optimization. For each
wavelength and angle combination, 500 individual optimizations are performed and the highest efficiency device is used for the plot. (B) Plot of
metagrating efficiency for devices designed using the conditional GLOnet. For each wavelength and angle combination, 500 devices are generated
and the highest efficiency device is used for the plot. (C) Efficiency histograms of devices designed using adjoint-based topology optimization (red)
and conditional GLOnet optimization (blue). The highest device efficiencies in each histogram are also displayed. For most wavelength and angle
values, the efficiency distributions from the conditional GLOnet are narrower and have higher maximum values compared to those from adjoint-
based topology optimization.
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in the Supporting Information, indicates that the conditional
GLOnet uses 10× less computational cost compared to our
benchmark adjoint-based topology optimization calculations.
We note that as the number of accessible computing nodes
scales up, the efficacy and power of conditional GLOnets can
be enhanced by implementing more simulations in parallel and
scaling the batch sizes up. Such scaling is particularly amenable
to existing cloud and server computing infrastructure, which
generally enable access to large numbers of computing nodes.
Finally, we attempt to refine the generated devices from the

conditional GLOnet using adjoint-based boundary optimiza-
tion (Figure 5A). In this algorithm, g is calculated by
conducting a forward and adjoint simulation, which is
consistent with topology optimization. However, we only
consider the gradients at the silicon−air boundaries of the
device and fix the device refractive indices to be binary

throughout the optimization. For this analysis, we perform 10
iterations of boundary optimization on the highest efficiency
generated device for each wavelength and angle pair (Figure
3B). The final device efficiencies after boundary optimization
are shown in Figure 5B and the differential changes in
efficiency are shown in Figure 5C. Most of the efficiency
changes are relatively modest and only 4% of devices have
efficiency gains larger than 5%, indicating that devices from the
conditional GLOnet are already at or near local optima.

Conclusions. In summary, we have shown that conditional
GLOnets are an effective and computationally efficient global
topology optimizer for metagratings. A global search through
the design space is possible because the generative neural
network optimizes the efficiencies of device distributions that
initially span the full design space. The best devices generated
by the conditional GLOnet compare well with the best devices

Figure 4. Evolution of device patterns and efficiency histograms as a function of conditional GLOnet training. (A) Visualization of 100 device
patterns generated by the conditional GLOnet at different iteration numbers, depicted in a 2D representation of the design space. All devices are
designed to operate at a wavelength of 900 nm and an angle of 60°. The distribution of generated devices is initially spread out in the design space
at the early stages of training and converges to a high efficiency cluster by the 1000 iteration mark. (B) Efficiency histogram of generated devices at
different iteration numbers. The efficiency histogram is initially broad and converges to a distribution of devices biased toward high efficiencies by
the 1000 iteration mark.

Figure 5. Device refinement using boundary optimization. (A) Boundary optimization uses efficiency gradients to refine the boundaries of binary
structures. (B) Efficiency plot of devices generated by the conditional GLOnet and then refined with 10 iterations of boundary optimization. For
this plot, the best device from Figure 3B for each wavelength and angle combination is used for boundary optimization. (C) Plot of gains in
efficiency after boundary optimization, calculated from the data in Figure 3B and Figure 5B. Most devices experience modest boosts in efficiency
and 4% of devices exhibit over a 5% efficiency improvement.
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generated by adjoint-based topology optimization. By con-
ditioning GLOnets with a continuum of operating parameters,
ensembles of devices can be simultaneously optimized, further
reducing overall computational cost. Future work will focus on
extending conditional GLOnets to other metasurface systems,
including aperiodic broadband devices. The loss function for
those design problems can be defined in the same way here,
but with g tailored to the specific optimization target. For
broadband devices, for example, g should consist of the
weighted summation of efficiency gradients at different
wavelengths. Given the generality of our approach, we envision
that conditional GLOnets can apply to the design of other
classes of photonic devices and more broadly to other physical
systems in which device performance can be improved using
gradients.
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Babinec, T. M.; Vucǩovic,́ J. Nat. Photonics 2015, 9, 374.
(24) Hughes, T. W.; Minkov, M.; Williamson, I. A.; Fan, S. ACS
Photonics 2018, 5, 4781−4787.
(25) Lalau-Keraly, C. M.; Bhargava, S.; Miller, O. D.; Yablonovitch,
E. Opt. Express 2013, 21, 21693−21701.
(26) Peurifoy, J.; Shen, Y.; Jing, L.; Yang, Y.; Cano-Renteria, F.;
DeLacy, B. G.; Joannopoulos, J. D.; Tegmark, M.; Soljacǐc,́ M. Sci.
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