
Generative Model for the Inverse Design of Metasurfaces
Zhaocheng Liu,† Dayu Zhu,† Sean P. Rodrigues,†,‡ Kyu-Tae Lee,† and Wenshan Cai*,†,‡

†School of Electrical and Computer Engineering and ‡School of Materials Science and Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332

*S Supporting Information

ABSTRACT: The advent of metasurfaces in recent years has ushered in
a revolutionary means to manipulate the behavior of light on the
nanoscale. The design of such structures, to date, has relied on the
expertise of an optical scientist to guide a progression of electromagnetic
simulations that iteratively solve Maxwell’s equations until a locally
optimized solution can be attained. In this work, we identify a solution to
circumvent this conventional design procedure by means of a deep
learning architecture. When fed an input set of customer-defined optical
spectra, the constructed generative network generates candidate patterns that match the on-demand spectra with high fidelity.
This approach reveals an opportunity to expedite the discovery and design of metasurfaces for tailored optical responses in a
systematic, inverse-design manner.
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Close of the last century, discoveries in light-matter
interactions on the nanoscale unlocked optical phenom-

ena that would help to confine light to subwavelength scales,
opening a gateway to a new era of optical design. The
metasurfaces, a member of this family of new nanophotonic
devices, is capable of generating periodic dipoles in order to
manipulate the behavior of light in a nonclassically predicted
manner. As such, a well-designed metasurface can tailor the
transmittance and phase delay of electromagnetic waves over
any wavelength spectrum.1−5 The realization of these materials
has led to a vast number of applications in perfect absorption,6

super resolution imaging,7,8 beam steering,9,10 and nonlinear
optical generation.11,12

As these nanostructured materials require labor intensive
fabrication, an accurate prediction of the optical spectrum and
structure of the envisioned metasurfaces must be preemptively
articulated. However, the complicated physical mechanisms
that describe these light-matter interactions at the nanoscale
cannot be resolved by generalized theory and as such the
prediction of a material’s optical properties and approximate
structure relies on advanced iterative calculations achieved by
finite-element modeling (FEM) or finite-difference time-
domain (FDTD) methods. Moreover, this conventional
metasurface design process is innately flawed by human guided
error. Not only is the initial design realized based on physical
insights and intuitive reasoning, but the finalized geometric and
material parameters are ultimately achieved by a means of trial-
and-error. The design of such optical systems demands a
working knowledge base of optics in order to moderate
iterative simulations that scan multidimensional parameter
spaces. Thanks to rapid developments in artificial intelligence
(AI), some scientific problems that classically required human
perception or intricate mechanisms have recently been solved
by AI.13−17 Such methods have translated into the field of

optics, by employing optimization methods18−23 and evolu-
tionary algorithms24 to expedite the design of photonic
devices. To accelerate the design process without extensive
computation (numerical or analytical) of Maxwell’s equations,
data driven methods, especially deep neural networks, have
been gradually incorporated into the design of microwave and
nanophotonics devices.25−28

With growing interest of new phenomena and applications
using metasurfaces, there is an ever-pressing need to develop
efficient methods that expedite the discovery and design of
novel metasurface structures with custom-defined function-
ality. As illustrated in Figure 1a, this work aims to leverage
deep neural networks to approximate the spectra of a
metasurface and, more importantly, to generate metasurface
patterns that yield customer-defined spectra at the input. The
latter is the long-sought-after goal of inverse optical design in
which a working structure is to be generated directly based on
the desired optical responses of the designer. In doing so, the
need for extensive parameter scans or trial-and-error
procedures is bypassed. However, due to the enormous
degrees of freedom in typical metasurface patterns, conven-
tional neural network schema, like backpropagation in trained
simulator networks,28 are impotent in the inverse design of
metasurfaces. In addition, the trained simulator defines the
problem as a deterministic system, such that a single simulator
will inevitably lead to a fixed outcome for a given input
condition. Meanwhile, multiple solutions may exist for the
same target spectrum fed to the simulator at the input, thereby
imposing an unnecessary constraint on the diversity of the
optimized structures.
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To mitigate these challenges, here we adopt a generative
adversarial network (GAN) in the network model. A GAN is
an unsupervised learning architecture consisting of two
networks, namely a generator and a critic, that contesting
with each other to create authentic image and video data
sets.29−32 Instead of employing a single simulator to tackle the
inverse design problem, we incorporate a GAN to jointly seek
the structures for the intended spectra at the input. We have
also constructed a geometric data set that is comprised of
images of random shapes. When training the GAN-based
network with the geometric data, the resultant patterns from
the network will resemble some samples in the geometric data
set. Because constructing such geometric data is largely
effortless, given a sufficiently large data set of the geometries
we will be able to identify and refine proper shapes of the
structures in order to replicate the demanded spectra at the
input of the networks. Compared to existing practices of
optical design with neural networks, which are only able to
optimize a few geometrical parameters of a fixed structure
represented as vectors (i.e., thickness distribution of layered
systems), our network allows for the generation of essentially
arbitrary patterns of the unit cell structure, represented as
pixelwise images. In contrast to deterministic optimization
approaches, which achieve one suboptimum nanostructure
after expensive computation of Maxwell’s equations, our

approach allows one to avoid local minimum by identifying
multiple patterns with distinct topologies in a short period of
time. Moreover, the technique developed here can process
multiple input spectra in parallel, which facilitates efficient
design and optimization of more than one optical structures
simultaneously. Such a need is commonly encountered in
metasurfaces research, where gradient metastructures of
varying unit cells are distributed in a two-dimensional space
for wavefront shaping applications such as metaholograms,
vortex generation, and planar lenses.

Network Architecture. To realize the AI-based optical
design described above, we have constructed a network
architecture as illustrated Figure 1b. We divide the network
into three parts: a simulator (S), a generator (G), and a critic
(D). The primary goal is to train an overfitted generator, which
produces metasurface patterns in response to given input
spectra T such that the Euclidean distance between the spectra
of the generated pattern T′ and the input spectra T is
minimized. All three networks are convolutional neural
networks with delicate differences in detailed structures. The
simulator is a pretrained model with fixed weights, taking the
generated patterns as input and approximating their trans-
mittances spectra T̂ without the use of electromagnetic
simulations. It is built to control the accuracy of the optical
spectra of the generated structures when training the generator.

Figure 1. Transitioning metasurface design from conventional trial-and-error approaches to neural network mediated inverse design. (a) Both
simulation and inverse design enact structure−property relationships to generate an optical spectrum from a metasurface and vice versa. In this
work, both processes will be replaced by deep neural networks. (b) Architecture of the proposed network for AI-based optical design. Three
networks, the generator, the simulator, and the critic constitute the complete architecture. The generator accepts the spectra T and noise z and
produces possible patterns. The simulator is a pretrained network that approximates the transmittance spectrum T̂ for a given pattern at its input,
and the critic evaluates the distance of the distributions between the geometric data and the patterns from the generator. While training the
generator, the produced patterns vary according to the feedback obtained from S and D. Valid patterns are documented during the training process,
and are smoothed to qualify as candidate structures.
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The generator and the critic together constitute a GAN. The
critic of this GAN accepts both the user-defined geometric data
and the patterns generated from the generator, and then yields
a value l which is essential to compute the distance between
the distributions of the two sets of data. By minimizing this
distance, the critic network guides the generator to produce
patterns that share commons features with the input geometric
data. During the training process, we update the weights in the
generator by backpropagation from the losses defined by the
simulator and the critic. Valid patterns produced by the
generator are documented throughout the training process;
this occurs whenever the losses of the simulator and critic are
sufficiently small. The generated patterns are finally smoothed
to binary images as candidates of the metasurface design.
Detailed network configurations and training methods are
presented in the Supporting Information.
In essence, the critic learns the distribution of the geometric

data and restricts the generator to produce patterns in the
image space in which the geometric data resides. Although it is
mathematically possible to define a function to replace the
critic network, it is unfeasible to identify an explicit expression
for the function when the geometric data are diverse and
complicated as seen in our case. There are several benefits of
including such a network critic into the overall network
architecture. First, it excludes a large number of unacceptable
patterns that are deemed unrealistic in actual nanofabrication.
Second, it allows us to control the overall shape of the
generated patterns by feeding similar geometries into the critic.
While such forethoughts are not necessary for AI-guided
optical design, as demonstrated in the latter part of this work,
certain geometrical constraints at the input may help to narrow
down the potential candidates and thereby expedite the

convergence to a solution. Finally, because the production of
various categories of geometric data is straightforward and
largely effortless, we can modify the distributions of the
geometric data to avoid degeneracy. This may occur when
multiple metasurface patterns of different topologies possess
identical optical spectra to the input spectra within an
acceptable margin of deviation.
As a representative and generalizable case study, we will

apply the strategy outlined above to the design of metasurfaces
with prescribed spectral behavior under linearly polarized
illumination. The general unit cell of the metasurface used in
this model is shown in Figure 2a, which has a single layered
gold pattern in a square lattice, situated on a glass substrate.
Other common parameters include a lattice constant of w =
340 nm and a thickness of the gold layer set to d = 50 nm. To
train the simulator with sufficient data, we carried out 6500 full
wave finite element method (FEM) simulations for meta-
surfaces with a wide variety of shapes that replaced the metal in
the unit cells. The simulation was run over a frequency span
from f = 170−600 THz (i.e., 500 nm to 1.8 μm in the
wavelength domain), which covers a major portion of the
visible and the near-infrared spectral range. These FEM
simulations yield the transmittance magnitude spectra Tij of
each metasurface under x- and y-polarized illumination, where i
and j indicates the polarization directions for the incidence and
the detection, respectively. Throughout the training, the unit
cell structure is represented as a binary image of 64 × 64 pixels,
in which 1 stands for gold and −1 for void (air). Each
transmission spectrum Tij( f) is represented as a 32-entry
vector with equal frequency intervals. The simulator after the
training process is able to approximate the transmittance T
with an average absolute error of less than 0.01 at each

Figure 2. Effectiveness of the engineered simulator and critic networks. (a) The unit cell of the metasurface used in our case study of the inverse
design problem. The pattern is allowed to vary for a desired spectral response with the following structural and material constraints enforced: gold
for the pattern and glass as the substrate; unit cell size w = 340 nm; thickness of gold d = 50 nm. (b) Transmission spectra of a representative
structure shown in (a), obtained by FEM electromagnetic simulation (solid lines) and by the simulator network (circles), respectively. (c)
Generated patterns during the training process after certain iterations with and without the critic network. Only geometric data categorized as a
cross are fed into the critic in this example.
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frequency point. An example for the effectiveness of the
simulator is illustrated in Figure 2b, where the solid lines are
the results from the FEM electromagnetic simulations for the
ellipse particle array shown in Figure 2a. Here, the circles
represent the spectral approximation of the same structure
obtained by the neural network.
To demonstrate the mechanism and performance of the

network, we classify the geometric data into several classes
such as circles, arcs, crosses, ellipses, rectangles, and so forth. A
full list of the training data and corresponding samples are
made available in the Supporting Information. Figure 2c
illustrates a series of generated patterns during a training
process after certain iterations, with and without the critic
network. For this example, the critic is fed with a class of
geometric data only comprised of crosses. When the critic is
on, the generator receives feedback from the loss of both the
simulator and the critic. A cross pattern emerges and gradually
adjusts itself to meet the requirement of the input spectrum. In
sharp contrast, when the critic network is turned off, the
generator is then optimized to merely reduce the loss of the

simulator. Without the constraint enforced by the critic, the
generated pattern becomes a cluster of random pixels and stays
stabilized after a few hundred iterations. This comparison
demonstrates the pivotal role of the critic in narrowing down
the solution space to the interested region. The function of the
critic in our proposed strategy largely resembles those used in
GANs to handle the image generation tasks.

Results and Analysis. Our network architecture is capable
of generating metasurface patterns in response to an arbitrarily
input, on-demand set of optical spectra, whose Tij components
and frequency range of interest are defined by the user. At the
input of the generator, we specify a set of transmittance spectra
Tij from 170 to 600 THz, which corresponds to a wavelength
range of 500 nm to 1.8 μm. In the following discussion, we
define a set of patterns to be used as a test set and denote this
test set as s, the spectra of each s as T. Once these spectra are
passed through the network architecture, a pattern is retrieved
which we denote as s′ in correspondence to s. In verification,
the generated set s′ is FEM-simulated and defined as T′.
Unless mentioned otherwise, in the following experiments we

Figure 3. Generating patterns with a predesigned class of geometric data. (a) Test patterns s are depicted in the top row and the corresponding
generated patterns s′ are listed in the bottom row. Each shape provides a sample of the different classes of geometric data input to the critic
network. (b) Transmittance spectra, T′, of a test pattern s, to be fed to the network. (c) FEM simulated transmittance of the retrieved pattern s′,
from the neural network based on the input as in (b). The unit cells of s and s′ are shown in the lower right corner of each figure. This result is
achieved when the critic only receives geometric data of the elliptical class. (d,e) An example of results with a modified MNIST handwritten digital
data set as the input geometric data. Note that in this experiment, we intentionally excluded digit “5” in the input geometric data.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b03171
Nano Lett. 2018, 18, 6570−6576

6573

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03171/suppl_file/nl8b03171_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.8b03171


set the number of patterns being parallelly searched at each run
to be 40 and the total iterations of the training to be 50 000.
For each target spectrum, valid patterns may occur at different
stages of the training process whenever the losses of the
simulator and critic are both reasonably small. On a machine
with a single GPU Quadro P5000, it takes approximately 10
min to carry out 10 000 iterations of training on average.
As an initial demonstration, to illustrate the overall

competence of the proposed framework we use the spectra,
T, of randomly selected test samples from each geometric class
as the input and allow the network to seek proper patterns
based on these spectra. In this situation, we ensure the
existence of solutions by using actual spectra of real patterns as
the “target” or input. This constraint will be removed when we
perform the inverse design for on-demand spectra, as
presented in a later part of the paper. In each test, the critic
is fed with 1000 data points (i.e., geometrical shapes) that are

randomly generated from the same geometric class. Figure 3a
shows representative samples from such experiments for each
class of the geometry. The first row depicts the test samples s,
and the second row shows the corresponding samples s′
generated by the network. The geometric patterns in each pair
of the two rows agree very well, partially because the full
spectra input Tij to the generator substantially narrows down
the possible solutions. Because the generator does not receive
any direct information on the geometry for the input spectra, it
may uncover equivalent patterns s′ that are different from the
test structures s while yielding the same spectral behavior. Such
examples can be found in the cross, sector and arc cases in
Figure 3a, where the discovered patterns s′ are mirror-flipped
counterparts of s with the same optical responses under linearly
polarized illuminations.
Figure 3b,c shows the spectra of an ellipse test sample s and

those of the discovered pattern s′ with the corresponding unit

Figure 4. Statistical accuracy of the model and examples of generated patterns with mixed classes of geometric data. (a) Geometric accuracy,
average accuracy, and minimum accuracy of experiments with the different classes of geometric data. (b,c) Example of results with a mixture of
different classes of geometric data used at the input. Transmittance spectra of the test structure s and the generated pattern s′ are shown in the (b)
and (c), respectively, with the unit cell depicted as the inset in each figure. (d,e) Example of Inverse design of metasurfaces with human-defined
spectra. (d) Desired transmittance spectra as the input to the generator, where Txx and Tyy are two randomly generated Gaussian-like responses
with parameters a, μ, and σ, while Txy and Tyx are 0 throughout the frequency range of interest. (e) The resultant unit cell generated by our AI
model to fit the target spectra, along with the FEM simulated transmittance spectra of this generated metasurface.
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cell of the metasurface placed as insets. Comparison between
the two sets allows us to conclude that the network has
successfully identified the correct structure to replicate the
spectra with only minor deviations. We also note that the
geometric data fed into the critic network does not necessarily
contain the right shape of the resultant solutions. If the type of
the right pattern s for the required spectra is contained in the
geometric data at the input, the nature of the GAN will lead to
a decent chance of identifying the structure s as a proper
candidate; otherwise, the critic will guide the generator to
produce patterns with geometric features similar to those of
the right geometry.29

To illustrate the ability of our model to optimize structures
of any shape, we further test our network with handwritten
digit data set MNIST as the unit patterns of metasurfaces.33

We modify patterns from the MNIST data set with rotation
and shifting, and then feed them into the critic during the
training. In this experiment, we intentionally exclude digit “5”
in the geometric data set at the input of the critic, and ask the
network to generate a pattern that replicates the spectral
features of a metasurface with digit “5”. Figure 3d,e shows the
spectra of the test sample , a rotated digit “5”, and the
discovered pattern s′, a modified digit “3”, respectively. The
topologies of the s and s′ differ considerably, but the overall
transmittance behaviors of the two samples, especially Txx and
Tyy, possess similar features in terms of both the spectral
location and the amplitude. By removing the input structure
from the trained data set, the network proves its overarching
utility in producing a set of spectra that can competently match
that of the input structure.
To quantify the performance of the network, we

quantitatively define three types of accuracy as follows. (1)
Geometric accuracy: the portion of s′ that can be recognized as
within the same class of the input geometric data. (2) Average
accuracy 1 − eave, where eave is the average absolute error of the
transmittance per frequency point. (3) Minimum accuracy 1 −
emax, where emax represents the largest absolute error of the
transmittance over all frequencies. Figure 4a displays the three
accuracies in our experiments for various classes of geometry.
The average and minimum accuracies are calculated based on
the correct ones in s′ in terms of the geometric accuracy. We
also note that these accuracies are data-dependent and may
vary when the distribution of geometric data changes.
Next, to further exemplify the generality and versatility of

the constructed network, we feed into the critic mixed data
from all classes of geometry with over 8000 data points, and
the test samples are also randomly selected from all possible
geometries. As shown in the last column of Figure 4a, the
accuracy in this situation does not degrade compared to prior
studies with only a single geometry input. An example of a
discovered structure with mixed geometric input is presented
in Figure 4b,c. Just as before, Figure 4b,c indicates the FEM-
simulated spectra of the test pattern s and the generated
pattern s′ in response to the spectral demand, respectively.
Although no specific class of geometry is indicated during the
training, the generator is able to reach a pattern, s′, that not
only geometrically resembles s but more importantly possesses
transmittance spectra, T′, nearly identical to that of T. In
general, if the input geometric data contains more than one
topology that satisfies the spectral demand, the network may
generate some or all of them in a probabilistic manner.
Moreover, by changing the distribution of the geometric data,
the user may achieve diverse solutions in response to the same

spectral request, thereby mitigating the potential of degener-
acy, as described earlier.
As a final example, we demonstrate the efficacy of our

approach in the reverse design of a metasurface for user drawn
spectral responses, T. In practice, the desired spectra at the
input are user defined, and the existence of solutions is not
guaranteed. This is particularly true when certain constraints
are applied to the metasurface design. For instance, in the
present study parameters such as the materials used, the unit
cell size, and the thickness of the patterned layer are all
predefined in the training data. Nevertheless, when the
simulator is sufficiently robust, the network is still able to
unearth the best possible pattern that yields spectra T′ with
minimized deviation from the input spectra T. To demonstrate
this feature, here we design a metasurface with the desired,
user-defined spectra behavior shown in the Figure 4d: (i) Txx
and Tyy are two Gaussian-like resonances with randomly
chosen mean μ, variance σ, and amplitude a, and (ii) Txy and
Tyx are zero. The generated pattern along with its spectra T′ is
shown in the Figure 4e. Although there exists no exact solution
to spectral demand described above, the network eventually
generates patterns whose spectra share common features with
the input spectra including the resonance frequency, the
spectral bandwidth, and the transmission magnitude.

Conclusion. In this work, we have proposed a generative,
deep, network model which efficiently discovers and optimizes
unit cell patterns of metasurfaces in response to user-defined,
on-demand spectra at the input. Our model addresses the
pursuit of reverse design technology for photonic structures
and helps to relieve computational and specialist resources in
traditional metasurface design from iterative simulations and
parameter sweeping up to generalizing the process for users
lacking a solid knowledge base in optics. The model developed
here is mostly based on the unsupervised learning, which
guarantees efficient generation of structural patterns independ-
ent of human experience. This feature is crucial in the
investigation of new structures and novel phenomena in optics
and beyond. In addition, as our model can process multiple
input spectra without the loss of efficiency, the workload for
complicated problems that require multiple metasurfaces or
gradient structural distributions will be significantly reduced.
The performance of the model can be further improved by
applying certain refinements, such as the use of a more
sophisticated network configuration and the introduction of
loss functions with more practical physical meanings.
The methodology we have developed is readily extended to

the pursuit of desired complex values of the reflection and
transmission coefficients, which is essential to the applications
like meta-lenses and meta-holograms where both the
amplitude and the phase of the light waves matter. For
example, by replacing the simulator used here with a more
comprehensive simulator trained to approximate the spectra
and phase delay of all-dielectric nanostructures, our approach
can be adapted for the design of metasurfaces with prescribed
intensity distribution and dispersion angle of light at arbitrary
wavelengths. In the current work, we restrict the unit pattern of
the metasurface as a single metallic particle with continuous
topology. By revising the geometric data set and refining the
simulator, unit cells with multiple particles and complicated
structures can be designed and optimized as well. The
increased arbitrariness of topology can significantly improve
the spectral accuracy of the outcome from our model.
Moreover, if sufficient data for the training of the simulator
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is available, greater degrees of freedom in the design can be
made by slightly modifying the network architecture to include
modifications of the lattice constant or optimization of the
pattern thickness. Further improvement in subsequent studies
may include the incorporation of other AI algorithms, such as
the reinforcement learning and the evolutionary algorithms, to
mitigate the dependency of prior knowledge of human and
alleviate the amount of data for the training. The developed
framework can be adapted to many other applications in optics
and materials science, including multilayer metasurfaces,
photonic crystals, 3D metamaterials, imaging systems, phase
transitions, and so forth. We envision broad and growing
utilization of the deep learning technology in the physics realm
so that scientists and engineers will be largely relieved from
tedious processes of trial and error and instead focus more on
truly creative thoughts yet to be broached by the machine.
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