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Recent success in deep neural networks has generated strong interest in hardware accelerators to
improve speed and energy consumption. This paper presents a new type of photonic accelerator based on
coherent detection that is scalable to large (N ≳ 106) networks and can be operated at high (gigahertz)
speeds and very low (subattojoule) energies per multiply and accumulate (MAC), using the massive spatial
multiplexing enabled by standard free-space optical components. In contrast to previous approaches, both
weights and inputs are optically encoded so that the network can be reprogrammed and trained on the fly.
Simulations of the network using models for digit and image classification reveal a “standard quantum
limit” for optical neural networks, set by photodetector shot noise. This bound, which can be as low as
50 zJ=MAC, suggests that performance below the thermodynamic (Landauer) limit for digital irreversible
computation is theoretically possible in this device. The proposed accelerator can implement both fully
connected and convolutional networks. We also present a scheme for backpropagation and training that can
be performed in the same hardware. This architecture will enable a new class of ultralow-energy processors
for deep learning.
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I. INTRODUCTION

In recent years, deep neural networks have tackled a
wide range of problems including image analysis [1],
natural language processing [2], game playing [3], physical
chemistry [4], and medicine [5]. This is not a new field,
however. The theoretical tools underpinning deep learning
have been around for several decades [6–8]; the recent
resurgence is driven primarily by (1) the availability of
large training datasets [9] and (2) substantial growth in
computing power [10] and the ability to train networks on
graphics processing units (GPUs) [11]. Moving to more
complex problems and higher network accuracies requires
larger and deeper neural networks, which in turn require
even more computing power [12]. This motivates the
development of special-purpose hardware optimized to
perform neural-network inference and training [13].
To outperform a GPU, a neural-network accelerator

must significantly lower the energy consumption, since
the performance of modern microprocessors is limited by
on-chip power [14]. In addition, the system must be fast,
programmable, scalable to many neurons, compact, and

ideally compatible with training as well as inference.
Application-specific integrated circuits (ASICs) are one
obvious candidate for this task. State-of-the-art ASICs
can reduce the energy per multiply and accumulate
(MAC) from 20 pJ=MAC for modern GPUs [15] to around
1 pJ=MAC [16,17]. However, ASICs are based on CMOS
technology and therefore suffer from the interconnect
problem—even in highly optimized architectures where
data are stored in register files close to the logic units, a
majority of the energy consumption comes from data
movement, not logic [13,16]. Analog crossbar arrays based
on CMOS gates [18] or memristors [19,20] promise better
performance, but as analog electronic devices, they suffer
from calibration issues and limited accuracy [21].
Photonic approaches can greatly reduce both the logic

and data-movement energy by performing (the linear part
of) each neural-network layer in a passive, linear optical
circuit. This allows the linear step to be performed at high
speed with no energy consumption beyond transmitter
and receiver energies. Optical neural networks based on
free-space diffraction [22] have been reported, but require
spatial light modulators or 3D-printed diffractive ele-
ments, and are therefore not rapidly programmable.
Nanophotonic circuits are a promising alternative
[23,24], but the footprint of directional couplers and
phase modulators makes scaling to large (N ≥ 1000)
numbers of neurons very challenging. To date, the goal
of a large-scale, rapidly reprogrammable photonic neural
network remains unrealized.

*rhamerly@mit.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 021032 (2019)

2160-3308=19=9(2)=021032(12) 021032-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.021032&domain=pdf&date_stamp=2019-05-16
https://doi.org/10.1103/PhysRevX.9.021032
https://doi.org/10.1103/PhysRevX.9.021032
https://doi.org/10.1103/PhysRevX.9.021032
https://doi.org/10.1103/PhysRevX.9.021032
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


This paper presents a new architecture based on coherent
(homodyne) detection that is fast, low power, compact,
and readily scalable to large (N ≳ 106) numbers of neurons.
In contrast to previous schemes, here we encode both the
inputs and weights in optical signals, allowing the weights
to be changed on the fly at high speed. Synaptic con-
nections (matrix-vector products) are realized by the
quantum photoelectric multiplication process in the homo-
dyne detectors. Our system is naturally adapted to free-
space optics and can therefore take advantage of the
massive spatial multiplexing possible in free-space systems
[25,26] and the high pixel density of modern focal-plane
arrays [27] to scale to far more neurons than can be
supported in nanophotonics or electronic crossbar arrays.
The optical energy consumption is subject to a fundamental
standard quantum limit (SQL) arising from the effects of
shot noise in photodetectors, which lead to classification
errors. Simulations based on neural networks trained on
the Modified NIST (MNIST) dataset [8] empirically show
the SQL can be as low as 50–100 zeptojoules ðzJÞ=MAC.
Using realistic laser, modulator, and detector energies,
performance at the sub-fJ/MAC level should be possible

with present technology. The optical system can be used for
both fully connected and convolutional layers. Finally,
backpropagation is straightforward to implement in our
system, allowing both inference and training to be per-
formed in the same optical device.

II. COHERENT MATRIX MULTIPLIER

Figure 1 illustrates the device. A deep neural network is a
sequence ofK layers [Fig. 1(a)], each consisting of a matrix
multiplication x⃗ → Ax⃗ (synaptic connections) and an ele-
mentwise nonlinearity xi → fðxiÞ (activation function);
thus the input into the (kþ 1)th layer is related to the
kth layer input by

xðkþ1Þ
i ¼ f

�X
j

AðkÞ
ij x

ðkÞ
j

�
: ð1Þ

For a given layer, let N and N0 be the number of input
and output neurons, respectively. Input (output) data are
encoded temporally as N (N0) pulses on a single channel
as shown in Fig. 1(b). This encoding, reminiscent of
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FIG. 1. Schematic diagram of a single layer of the homodyne optical neural network. (a) Neural network represented as a sequence of
K layers, each consisting of a matrix-vector multiplication (gray) and an elementwise nonlinearity (red). (b) Implementation of a single
layer. Matrix multiplication is performed by combining input and weight signals and performing balanced homodyne detection (inset)
between each signal-weight pair (gray box). For details on experimental implementation see Sec. S1 of Supplemental Material [31]. The
resulting electronic signals are sent through a nonlinear function (red box), serialized, and sent to the input of the next layer.
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the coherent Ising machine [28–30], contrasts with other
approaches used for neural networks, which encode inputs
in separate spatial channels [22–24]. As there are NN0
weights for an N0 × N fully connected matrix, the weights
enter on N0 separate channels, each carrying a single matrix
row encoded in time. Input data are optically fanned out to
all N0 channels, and each detector functions as a quantum
photoelectric multiplier, calculating the homodyne product
between the two signals [inset of Fig. 1(b)]. As long as both
signals are driven from the same coherent source and the
path-length difference is less than the coherence length, the
charge Qi accumulated by homodyne receiver i is

Qi ¼
2ηe
ℏω

Z
Re½EðinÞðtÞ�EðwtÞ

i ðtÞ�dt ∝
X
j

Aijxj: ð2Þ

Here EðinÞðtÞ and EðwtÞ
i ðtÞ are the input and weight fields for

receiver i, which are taken to be sequences of pulses with
amplitudes proportional to xj and Aij, respectively (xj,
Aij ∈ R). Thus, each receiver performs a vector-vector

product between x⃗ and a row A⃗i of the weight matrix; taken
together, the N0 electronic outputs give the matrix-vector
product Ax⃗. Fields are normalized so that power is given by
PðtÞ ¼ jEðtÞj2, and η is the detector efficiency. A serializer
reads out these values one by one, applies the nonlinear
function fð·Þ in the electrical domain, and outputs the result
to a modulator to produce the next layer’s inputs.
The balanced homodyne detector in Fig. 1(b) (inset)

combines the advantages of optics and electronics: it can
process data encoded at extremely high speeds, limited
only by the bandwidth of the beam splitter (≳THz) and the
(optical) bandwidth of the photodetectors (typically
≳100 nm, or ≳10 THz). The electrical bandwidth can
be much slower, since only the integrated charge is
measured. Finally, the present scheme avoids the need
for low-power nonlinear optics that is a major stumbling
block in all-optical logic [32]: since the output is electrical,
the dot product Aijxj can be computed at extremely low
power (sub-fJ/MAC) using standard nonresonant compo-
nents (photodiodes) that are CMOS compatible and scal-
able to arrays of millions.
Previous approaches used optoelectronics (photodiodes,

lasers, amplifiers) both to sum neuron inputs [24,33] and to
generate nonlinearity or spiking dynamics [34–38]; here,
thanks to the optical weight encoding, the synaptic weight-
ing itself is performed optoelectronically.
Coherent detection greatly simplifies the setup compared

to alternative approaches. With a given set of weight
inputs, the network in Fig. 1(b) requires N input pulses
and N0 detectors to perform a matrix-vector operation
with NN0 MACs, performing an operation that should
scale quadratically with size using only linear resources.
This is in contrast to electrical approaches that require
quadratic resources (NN0 floating-point operations total).

The (optical) energy consumption of nanophotonic systems
[23,24] also scales linearly for the same operation; however,
the circuit is much more complex, requiringOðNN0Þ tunable
phase shifters [39,40] or ring resonators [24], which
becomes very challenging to scale beyond several hundred
channels and may be sensitive to propagation of fabrication
errors. The main caveat to our system is the need to generate
the weights in the first place, which imposes an energy cost
that does scale quadratically. However, in many cases
(particularly in data centers) neural networks are run
simultaneously over large batches of data, so with appro-
priate optical fan-out, the cost of the weights can be
amortized over many clients. Put another way, running
the neural network on data with batch size B, we are
performing a matrix-matrix product YN0×B ¼ AN0×NXN×B,
which requiresN0NBMACs, with an energy cost that should
scale asOðN0NÞþOðN0BÞþOðNBÞ rather thanOðN0NBÞ.

III. DEEP LEARNING AT THE STANDARD
QUANTUM LIMIT

As energy consumption is a primary concern in neuro-
morphic and computing hardware generally [14], an optical
approach must outperform electronics by a large factor to
justify the investment in a new technology. In addition,
optical systems must show great potential for improvement,
ideally by many orders of magnitude, to allow continued
scaling beyond the physical limits of Moore’s law. Thus
two considerations are relevant: (1) the fundamental,
physical limits to the energy consumption and (2) the
energy consumption of a practical, near-term device using
existing technology.
The fundamental limit stems from quantum-limited

noise. In an electrical signal, energy is quantized at a level
Eel ¼ h=τel, where τel ∼ 10−10 s is the signal duration.
Optical energy is quantized at a level Eopt ¼ h=τopt, where
τopt ≡ c=λ ∼ ð2–5Þ × 10−15 s, which is 104–105 times
higher. As a result, Eopt ≫ kT ≫ Eel, and electrical signals
can be treated in a classical limit governed by thermal
noise, while optical signals operate in a zero-temperature
quantum limit where vacuum fluctuations dominate. These
fluctuations are read out on the photodetectors, where the
photoelectric effect [41] produces a Poisson-distributed
photocurrent [42,43]. While the photocurrents are subtracted
in homodyne detection, the fluctuations add in quadrature,
and Eq. (1) is replaced by (see Sec. S3 of Supplemental
Material for derivation and assumptions [31])

xðkþ1Þ
i ¼f

�X
j

AðkÞ
ij x

ðkÞ
j þwðkÞ

i
kAðkÞkkxðkÞkffiffiffiffiffiffiffiffiffiffiffi

N2N0p
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffi
nMAC

p
�
: ð3Þ

Here the wðkÞ
i ∼ Nð0; 1Þ are Gaussian random variables, k · k

is the L2 norm, and nMAC is the number of photons per
MAC, related to the total energy consumption of the layer
by ntot ¼ NN0nMAC.
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The noise term in Eq. (3) scales as n−1=2MAC, and therefore
the signal-to-noise ratio (SNR) of each layer will scale as
SNR ∝ nMAC. Since noise adversely affects the network’s
performance, one expects that the energy minimum should
correspond to the value of nMAC at which the noise
becomes significant. To quantify this statement, we per-
form benchmark simulations using a collection of neural
networks trained on the MNIST (digit recognition) dataset.
While MNIST digit classification is a relatively easy task
[13], the intuition developed here should generalize to more
challenging problems. Data for two simple networks are
shown in Figs. 2 and 3, both having a three-layer, fully
connected topology [Fig. 2(a)]. In the absence of noise,
the networks classify images with high accuracy, as the
example illustrates [Fig. 2(b)].
As Fig. 3 shows, the error rate is a monotonically

decreasing function of nMAC. The two asymptotic limits
correspond to the noiseless case (nMAC → ∞, which returns
the network’s canonical accuracy) and the noise-dominated
case (nMAC → 0, where the network is making a random
guess). Of interest to us is the cutoff point, loosely defined
as the lowest possible energy at which the network returns
close to its canonical accuracy (for example, within a factor
of 2×, see dashed lines in Fig. 3). This is around 0.5–1 aJ
(5–10 photons) for the small network (inner layer size
N ¼ 100), and 50–100 zJ (0.5–1 photon) for the large
network (inner layer size N ¼ 1000). (Note that this is
per MAC; the number of photons per detector NnMAC
is typically ≫1.) This bound stems from the standard
quantum limit: the intrinsic uncertainty of quadrature
measurements on coherent states [44], which is

temperature and device independent. This should be
viewed as an absolute lower bound for the energy
consumption of neural networks of this type; although
the use of squeezed light allows one to reach sensitivity
below the SQL [45,46], this requires squeezing all inputs
(including vacuum inputs in optical fan-out), which will
likely lead to a net increase in overall energy consump-
tion [squeezing injects an average of sinh2ðηÞ photons per
pulse, where η is the squeezing parameter [42], which will
substantially increase nMAC].
The SQL is network dependent, and not all layers

contribute equally. For each MAC, we have SNR ∝
nMAC; however, the signal adds linearly while the errors
add in quadrature. As a result, the larger network is more
resilient to individual errors because each output is aver-
aging over more neurons. Moreover, the solid curves in
Fig. 3 are restricted to the case when nMAC is the same for
all layers. The dashed lines show the error rate in a fictitious
device where quantum-limited noise is present only in a
particular layer. For the large network, a smaller nMAC can
be tolerated in the second layer, suggesting that better
performance could be achieved by independently tuning
the energy for each layer. Moreover, just as neural networks
can be “codesigned” to achieve high accuracy on limited
bit-precision hardware [13], changes to the training pro-
cedure (e.g., injecting noise to inner layers, a technique
used to reduce generalization error [47,48]) may further
improve performance at low powers.

(a)

(b)

FIG. 2. (a) Illustration of a three-layer neural network with
full connectivity. (b) MNIST image classified by network
(size 784 → 1000 → 1000 → 10).

FIG. 3. MNIST digit classification. Error rate for neural-
network inference as a function of photons per MAC nMAC
(equivalently energy EMAC ¼ ðhc=λÞnMAC; here, λ ¼ 1.55 μm).

RYAN HAMERLY et al. PHYS. REV. X 9, 021032 (2019)

021032-4



Quantum limits to computational energy efficiency in
photonics are not unique to neural networks. In digital
photonic circuits based on optical bistability [49], vacuum
fluctuations lead to spontaneous switching events that limit
memory lifetime and gate accuracy [50,51]. However, these
effects require bistability at the attojoule scale [50,52],
which is well out of the reach of integrated photonics
(although recent developments are promising [53–55]).
By contrast, neural networks are analog systems, so the
quantum fluctuations set a meaningful limit on efficiency
even though no attojoule-scale optical nonlinearities are
employed.

IV. ENERGY BUDGET

Viewing the neural network as an analog system with
quantum-limited performance shifts the paradigm for
comparing neural networks. Figure 4(a) shows the standard
approach: a scatter plot comparing error rate with number
of MACs, a rough proxy for time or energy consumption
[12,13]. There is a trade-off between size and accuracy,
with larger networks requiring more operations but also
giving better accuracy. In the SQL picture, each point
becomes a curve because now we are free to vary the
number of photons per MAC, and the energy bound is set
by the total number of photons, not the number of MACs.
Figure 4(b) plots the error rate as a function of photon
number for the networks above. While the general trade-off

between energy and accuracy is preserved, there are a
number of counterintuitive results. For example, according
to Fig. 4(a), networks 1 and 2 have similar performance but
the first requires 8× more MACs, so under a conventional
analysis, network 2 would always be preferred. However,
Fig. 4(b) indicates that network 1 has better performance at
all energy levels. This is because network 1 is less sensitive
to shot noise due to averaging over many neurons, and
therefore can be operated at lower energies, compensating
for the increased neuron count. The same apparent paradox
is seen with networks 3 and 4. This suggests that, in a
quantum-limited scenario, reducing total energy may not be
as simple as reducing the number of operations.
The total energy budget depends on many factors besides

the SQL. Figure 5 plots energy per MAC as a function of
the average number of input neurons per layer N, a rough
“size” of the neural network. The SQL data are plotted for
the eight networks in Fig. 4, and the corresponding dashed
line is an empirical fit. Note that the SQL is an absolute
lower bound, assumes perfect detectors, and counts only
input optical energy. In a realistic device, this curve is
shifted up by a factor ðηdηcηsβmodÞ−1, where ηd, ηc, and ηs
are the detector, coupling, and source (laser) efficiencies
and βmod is the modulator launch efficiency [56]; these are
all close enough to unity in integrated systems [26,57–59]
that the factor is ≲10.
Another key factor is the detector electronics. The homo-

dyne signal from each neuron needs to be sent through a
nonlinear function yi → fðyiÞ and converted to the optical
domain using a modulator [Fig. 1(b)]. The most obvious

(a)

(b)

FIG. 4. (a) Conventional picture. Error rate as a function of
number of MACs for different fully connected MNIST neural
networks. (b) SQL picture. Error rate as a function of total
number of photons, for the same networks.

FIG. 5. Contributions to energy budget. SQL dots corres-
pond to minimum EMAC required to make the error rate
perrðEMACÞ<1.5perrð∞Þ [error bars correspond to perrðEMACÞ ¼
½1.2; 2.0�perrð∞Þ]. EMAC ¼ nMACðhc=λÞ, λ ¼ 1.55 μm.
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way to do this is to amplify and digitize the signal, perform
the functionfð·Þ in digital logic, serialize the outputs, convert
back to analog, and send the analog signal into themodulator.
Transimpedance amplifiers designed for optical intercon-
nects operate at the ∼100 fJ range [26,60], while analog to
digital converters (ADCs) in the few-pJ/sample regime are
available [61] and simple arithmetic (for the activation
function) can be performed at the picojoule scale [15–17].
Modulators in this energy range are standard [57,58,60].
Thus a reasonable near-term estimate would be few-pJ/
neuron; this figure is divided by the number of inputs per
neuron to give the energy per MAC (solid green curve in
Fig. 5). This few-pJ/neuron figure includes both optical and
electrical energy: even though only a fraction of the energy
is optical, the optical signal will be large compared to both
shot noise [Eq. (3)] and amplifier Johnson noise hΔneirms ∼
103 [62], so noise will not significantly degrade the
network’s performance.
A much more aggressive goal is 1 fJ=neuron (dashed

green curve). This figure is out of reach with current
technology, but research into fJ/bit on-chip interconnects
may enable it in the future [26,62]. A range of modulator
designs supports few-fJ/bit operation [63–66]. On-chip
interconnects also require photodetectors with ultralow
(femtofarad) capacitance, so that a femtojoule of light
produces a detectable signal without amplification [26,62];
such detectors have been realized with photonic crystals
[67], plasmon antennas [68,69], and nanowires [70]. By
eliminating the amplifier, ultrasmall “receiverless” detec-
tors avoid its ∼100 fJ energy cost as well as the Johnson
noise associated with the amplifier. [Johnson noise still
leads to fluctuations in the capacitor charge (kTC noise)
that go as hΔneirms ¼

ffiffiffiffiffiffiffiffiffi
kTC

p
=e ≈ 12

ffiffiffiffiffiffiffiffiffiffi
C=fF

p
[71], but for

small detectors shot noise will dominate; see Sec. S4 of
Supplemental Material [31].] Since 1 fJ=neuron is below
the energy figures for ADCs, it would require well-
designed analog electronics (for the nonlinear activation
function) and very tight integration between detector, logic,
and modulator [26]. At these energies, shot noise is also
non-negligible and the SQL becomes relevant, but as
mentioned above, due to optical inefficiencies the SQL
will likely be relevant at higher energies as well.
For context, the ∼1 pJ=MAC figure [15–17] for state-of-

the-art ASICs is shown in Fig. 5. Energy consumption in
nonreversible logic gates is bounded by the Landauer
(thermodynamic) limit Eop¼kT logð2Þ≈3 zJ [72]. While
multiply and accumulate is technically a reversible oper-
ation, all realistic computers implement it using nonre-
versible binary gates, so Landauer’s principle applies. A
32-bit multiplication [73,74] requires approximately 103

binary gates (see Sec. S4 of Supplemental Material [31])
and each bit operation consumes at least kT logð2Þ, giving a
limit EMAC ≥ 3 aJ (dotted line in Fig. 5). This is already
higher than the SQL for the larger networks with N ≥ 100.
The optical neural network can achieve sub-Landauer

performance because (1) it operates in analog, avoiding
the overhead of many bit operations per multiplication,
and (2) the matrix product is performed through optical
interference, which is reversible and not subject to the
bound. To understand the second point, recall that
homodyne detection computes the dot product via the
polarization identity: u⃗ · v⃗ ¼ 1

4
ðku⃗þ v⃗k2 − ku⃗ − v⃗k2Þ.

Optical interference, the reversible element that breaks
Landauer’s assumption, is needed to convert the signals
representing u⃗ and v⃗ to u⃗� v⃗ before squaring on the
detectors and subtracting.
A final consideration is the electrical energy required

to generate the weights. There is one weight pulse per
MAC, so at the minimum this will be 1 fJ=MAC for the
modulator, and may rise above 1 pJ=MAC once the driver
electronics and memory access are included. However,
once the optical signal is generated, it can be fanned out to
many neural networks in parallel, reducing this cost by a
factor of B, the batch size. Large batch sizes should enable
this contribution to EMAC to reach the few-femtojoule
regime, and potentially much lower.

V. TRAINING AND CONVOLUTIONS WITH
OPTICAL MATRIX-MATRIX MULTIPLIER

As discussed previously, the optical unit in Fig. 1(b)
performs a matrix-vector product, and running multiple
units in parallel with the same set of weights performs a
general matrix-matrix product (GEMM), a key function in
the basic linear algebra subprograms (BLAS) [75]. Figure 6
shows a schematic for an optical GEMM unit based on
homodyne detection inspired by the neural-network con-
cept. The inputs are two matrices ðM1Þm×k and ðM2Þn×k,
encoded into optical signals on the 1D red (blue) integrated
photonic transmitter arrays. Cylindrical lenses map these
inputs to rows (columns) of the 2D detector array. From the
accumulated charge at each pixel, one can extract the
matrix elements of the product ðM1MT

2 Þm×n. This operation
requires m · n · k MACs, and the total energy consumption
(and energy per MAC) are

Etot ¼ ðmkþ nkÞEin þ ðmnÞEout;

EMAC ¼
�
1

n
þ 1

m

�
Ein þ

1

k
Eout; ð4Þ

where Ein, Eout are the transmitter and receiver energy
requirements, per symbol, which include all optical energy
plus electronic driving, serialization, DAC or ADC, etc. If
all matrix dimensions ðm; n; kÞ are large, significant energy
savings per MAC are possible if Ein, Eout can be kept
reasonably small.
We saw above that the optical system could be used

for neural-network inference. When running a batch of B
instances X ¼ ½x1…xB�, the output Y ¼ ½y1…yB� can be
computed through the matrix-matrix product Y ¼ AX.
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In fully connected layers, training and backpropagation
also rely heavily on GEMM. The goal of training is to find
the set of weights AðkÞ that minimize the loss function L,
which characterizes the inaccuracy of the model. Training
typically proceeds by gradient-based methods. Since the
loss depends on the network output, we start at the final
layer and work backward, a process called backpropagation
[7,8]. At each layer, we compute the gradient ð∇ALÞij ¼
∂L=∂Aij from the quantity ð∇YLÞij ¼ ∂L=∂Yij, and propa-
gate the derivative back to the input ð∇XLÞij ¼ ∂L=∂Xij

[Fig. 7(a)]. These derivatives are computed from the chain
rule and can be written as matrix-matrix multiplications:

∇AL ¼ ð∇YLÞXT; ∇XL ¼ ATð∇YLÞ: ð5Þ

Once the derivative has been propagated to ∇XðkÞL (for
layer k), we use the chain rule to compute ∇Yðk−1ÞL ¼
f0ð∇XðkÞLÞ and proceed to the previous layer. In this way,
we sequentially compute the derivatives ∇AðkÞL at each
layer in the neural network.
In addition to fully connected layers, it is also possible

to run convolutional layers on the optical GEMM unit by
employing a “patching” technique [76]. In a convolutional
layer, the input xij;k is a W ×H image with C channels.
This is convolved to produce an output yij;k of dimension
W0 ×H0 with C0 channels [13]:

yij;k ¼
X
i0j0;l

Ki0j0;klxðsxiþi0Þðsyjþj0Þ;l: ð6Þ

Here Ki0j0;kl is the convolution kernel, a four-dimensional
tensor of size Kx × Ky × C0 × C, and ðsx; syÞ are the strides
of the convolution. Naively vectorizing Eq. (6) and running
it as a fully connected matrix-vector multiply is very
inefficient because the resulting matrix is sparse and
contains many redundant entries. Patching expresses the
image as a matrix X of size KxKyC ×W0H0, where each
column corresponds to a vectorized Kx × Ky patch of the
image [Fig. 7(b)]. The elements of the kernel are rearranged
to form a (dense) matrix K of size C0 × KxKyC.
Equation (6) can then be computed by taking the matrix-
matrix product Y ¼ KX, which has size C0 ×W0H0. On
virtually any microprocessor, GEMM is a highly optimized
function with very regular patterns of memory access; the
benefits of rewriting the convolution as a GEMM greatly
outweigh the redundancy of data storage arising from
overlapping patches [76]. The time required to rearrange
the image as a patch matrix is typically very small
compared to the time to compute the GEMM [77] (and
can be further reduced if necessary with network-on-chip
architectures [78] or optical buffering [79]); therefore, by
accelerating the GEMM, the optical matrix multiplier
will significantly improve the speed and energy efficiency
of convolutional layers. Note also that, since we are
performing the convolution as a matrix-matrix (rather than

(a)

(b)

I
I

FIG. 6. (a) Matrix multiplication with a 2D detector array,
two 1D transmitter arrays, and optical fan-out. Imaging lenses
(including cylindrical lenses for row and column fan-out) not
shown. (b) Schematic diagram of transmitter array.

(a)

(b)

FIG. 7. Applications of optical GEMM. (a) Required matrix
operations for inference, training, and backpropagation in a
deep neural network. (b) Patching technique to recast a con-
volution (Kx ¼ Ky ¼ 3, sx ¼ sy ¼ 2 shown) as a matrix-matrix
multiplication.
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matrix-vector) operation, it is possible to obtain energy
savings even without running the neural network on large
batches of data. Computing the convolution requires
W0H0KxKyC0C MACs. Following Eq. (4), the energy per
MAC (not including memory rearrangement for patching) is

EMAC ¼
�
1

C0 þ
1

W0H0

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1=cin

Ein þ
1

KxKyC|fflfflffl{zfflfflffl}
1=cout

Eout: ð7Þ

The coefficients cin¼ð1=Cþ1=W0H0Þ−1 and cout¼KxKyC
govern the energy efficiency when we are limited by input or
output energies (transmitter or receiver and associated
electronics). Since reading a 32-bit register takes ∼pJ of
energy [13], a reasonable lower bound for near-term systems
is Ein, Eout ≳ pJ. Thus it is essential that cin, cout ≫ 1 for
the energy performance of the optical system to beat an
ASIC (∼pJ=MAC).
As a benchmark problem, we consider ALEXNET [1], the

first convolutional neural network to perform competitively
at the ImageNet Large-Scale Visual Recognition Challenge
[9]. ALEXNET consists of five convolutional (CONV) layers
and three fully connected (FC) layers, and consistent with
deep neural networks generally, the majority of the energy
consumption comes from the CONV layers [13]. Table I
gives the layer dimensions and the values of cin, cout for the
CONV layers in ALEXNET [1]. The MAC-weighted
averages for all layers are hcini > 100 and hcouti >
1000. Thus, even under extremely conservative assump-
tions of Ein, Eout ≳ 100 pJ (comparable to DRAM read
energies [13,14]), it is still possible to achieve sub-pJ/MAC
performance.

More advanced technology, such as few-femtojoule
optical interconnects [26], may significantly reduce Ein
and Eout, and therefore the energy per MAC. However, the
performance is still fundamentally limited by detector shot
noise [see, e.g., Eq. (3) for FC layers]. Section S3 of
Supplemental Material [31] extends the shot-noise analysis
to the case of matrix-matrix products needed for the
convolutional case. Using a pretrained ALEXNET model
(see Sec. VII for details), Figure 8(b) shows the top-ten
accuracy on the ImageNet validation set as a function of the
number of photons per MAC nMAC. Consistent with Fig. 3,
there are two limits: nMAC ≪ 1 corresponds to the random
guess regime with 99% error rate (for top-ten accuracy with
1000 classes), while nMAC ≫ 1 recovers the accuracy of the
noiseless model.
The dashed lines in Fig. 8(b) show the fictitious case

where noise is present in only a single layer, while the solid
green line corresponds to the case where all layers have
noise and nMAC is the same for each layer. Not all layers
contribute equally to the noise: CONV1 is the most
sensitive, requiring nMAC ≳ 20, while the deeper layers
(particularly the fully connected layers) can tolerate much

TABLE I. Layers in ALEXNET [1]. Input dimension is
227 × 227 × 3. Values of cin, cout are calculated from Eq. (7).
Max pooling layers after CONV1, CONV2, and CONV5 are used
to reduce the image size, but the relative computational cost for
these layers is negligible.

Layer Output Kernel Stride MACs cin cout

CONV1 55 × 55 × 96 11 × 11 4 105M 93 363
(Pool) 27 × 27 × 96 � � � 2 � � � � � � � � �
CONV2 27 × 27 × 256 5 × 5 1 448M 189 2400
(Pool) 13 × 13 × 256 � � � 2 � � � � � � � � �
CONV3 13 × 13 × 384 3 × 3 1 150M 117 2304
CONV4 13 × 13 × 384 3 × 3 1 224M 117 3456
CONV5 13 × 13 × 256 3 × 3 1 150M 102 3456
(Pool) 6 × 6 × 256 � � � 2 � � � � � � � � �
FC1 4096 � � � � � � 38M � � � � � �
FC2 4096 � � � � � � 17M � � � � � �
FC3 1000 � � � � � � 4M � � � � � �

Total CONV layers 1.08G 132 1656
Total FC layers 59M � � � � � �

M ¼ 106; G ¼ 109.

(b)

(a)

FIG. 8. (a) Schematic drawing of ALEXNET, which consists of
five convolutional layers and 3 fully connected layers. Pooling
and normalization steps not shown. (b) Error rate for pretrained
ALEXNET as a function of nMAC. Dashed lines show the effect
of noise in a single layer, while solid green line shows the
performance of the actual machine where all layers have noise.
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lower energies nMAC ≳ 1. Since the SNR is related to the
total power received, which scales as coutnMAC for the
convolutional layers (cout pulses per detector), it is not
surprising that the deeper layers, which have a larger cout,
are less sensitive to quantum noise. The SQL obtained for
ALEXNET (nMAC ≳ 20 or EMAC ≳ 3 aJ) is slightly larger
than that from the MNIST networks in Fig. 3, but of the
same order of magnitude, suggesting that the SQL is
somewhat problem dependent.
It is worth contrasting the optical GEMM to more

familiar optical convolvers. It has long been known that
2D convolutions can be performed with optical Fourier
transforms [80–82]. However, this technique suffers from
two significant drawbacks. First, it employs spatial light
modulators, which limits the speed at which the kernel can
be reprogrammed. In addition, optics performs a single-
channel (C ¼ C0 ¼ 1) convolution, and while extending to
multiple output channels is possible by tiling kernels [83],
multiple input and output channels may be difficult.
In contrast to free-space and fully integrated approaches,

the optical GEMM leverages the complementary strengths
of both free-space and integrated photonics. Integrated
photonics is an ideal platform for realizing the transmitters,
as these employ a large number of fast (gigahertz) mod-
ulators on chip. On-chip integration allows scaling to large
arrays with control over the relative phase of each output
beam (a capability exploited in recent chip-based phased
arrays for beam steering [84–86]). Free-space propagation
provides an essential third dimension, which enables high
bandwidths at moderate clock frequencies [26] and data
fan-out patterns that are difficult to implement on a 2D
photonic chip. However, having a free-space element leads
to issues with phase stability and aberrations. Since the
transmitters are integrated, it is the relative phase between
the beam paths that drifts (on timescales long compared to
a computation), and this can be stabilized with a single
feedback loop to the overall transmitter phase, a small
constant overhead that does not scale with matrix size. To
correct for geometric aberrations and minimize cross talk
between detectors, multilens arrangements can be used, a
standard practice in high-resolution imaging systems [87].
Section S2 of Supplemental Material [31] presents an
optical design and analysis using Zemax® simulation
software supporting the hypothesis that a 103 × 103 optical
GEMM is achievable.

VI. DISCUSSION

This paper has presented a new architecture for optically
accelerated deep learning that is scalable to large problems
and can operate at high speeds with low energy consump-
tion. Our approach takes advantage of the photoelectric
effect, via the relation I ∝ jEj2, to compute the required
matrix products optoelectronically without need for an
all-optical nonlinearity, a key difficulty that has hobbled
conventional approaches to optical computing [32]. Since the

device can be constructed with free-space optical compo-
nents, it can scale to much larger sizes than purely nano-
photonic implementations [23], being ultimately limited by
the size of the detector array (N ≳ 106).
A key advantage to this scheme is that the multiplication

itself is performed passively by optical interference, so the
main speed and energy costs are associated with routing
data into and out of the device. For a matrix multiplication
Cm×n ¼ Am×kBk×n, the input-output (IO) energy scales as
OðmkÞ þOðnkÞ þOðmnÞ, while the number of MACs
scales as OðmnkÞ. For moderately large problems found
in convolutional neural-network layers (m, n, k ≥ 100)
with moderate IO energies (∼pJ), performance in the
∼10 fJ=MAC range should be feasible, which is 2–3 orders
of magnitude smaller than for state-of-the-art CMOS
circuits [15–17]. Advances in optical interconnects
[57,58,63] may reduce the IO energies by large factors
[26], translating to further improvements in energy per
MAC.
The fundamental limits to a technology are important to

its long-term scaling. For the optical neural network
presented here, detector shot noise presents a standard
quantum limit to neural-network energy efficiency [44].
Because this limit is physics based, it cannot be engineered
away unless nonclassical states of light are employed
[45,46]. To study the SQL in neural networks, we per-
formed Monte Carlo simulations on pretrained models for
MNIST digit recognition (fully connected) and ImageNet
image classification (convolutional). In both cases, network
performance is a function of the number of photons
used, which sets a lower bound on the energy per MAC.
This bound is problem and network dependent, and for
the problems tested in this paper, lies in the range
50 zJ–5 aJ=MAC. By contrast, the Landauer (thermody-
namic) limit for a digital processor is 3 aJ=MAC (assuming
1000 bit operations per MAC [73,74]); sub-Laudauer
performance is possible because the multiplication is
performed through optical interference, which is reversible
and not bounded by Landauer’s principle.
Historically, the exponential growth in computing power

has driven advances in machine learning by enabling the
development of larger, deeper, and more complex models
[11,13,16,17]. As Moore’s law runs out of steam, photonics
may become necessary for continued growth in processing
power—not only for interconnects [26], but also for
logic. The architecture sketched in this paper promises
significant short-term performance gains over state-of-the-
art electronics, with a long-term potential, bounded by the
standard quantum limit, of many orders of magnitude of
improvement.

VII. METHODS

Neural-network performance was computed using
Monte Carlo simulations. For fully connected layers,
Eq. (3) was used, while for convolutional layers, the
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convolution was performed by first forming the patch
matrix [Fig. 7(b)] and performing the matrix-matrix
multiplication (noise model discussed in Sec. S3 of
Supplemental Material [31]). The weights for the fully
connected MNIST neural networks were trained on a GPU
using TENSORFLOW. A pretrained TENSORFLOW version of
ALEXNET (available online at Ref. [88]) was modified to
implement the quantum noise model and used for
ImageNet classification. Simulations were performed on
an NVIDIA Tesla K40 GPU.
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