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In this paper, we demonstrate a computationally efficient new approach based on deep learning (DL) techniques for analysis,
design and optimization of electromagnetic (EM) nanostructures. We use the strong correlation among features of a generic EM
problem to considerably reduce the dimensionality of the problem and thus, the computational complexity, without imposing
considerable errors. By employing the dimensionality reduction concept using the more recently demonstrated autoencoder
technique, we redefine the conventional many-to-one design problem in EM nanostructures into a one-to-one problem plus a
much simpler many-to-one problem, which can be simply solved using an analytic formulation. This approach reduces the
computational complexity in solving both the forward problem (i.e., analysis) and the inverse problem (i.e., design) by orders of
magnitude compared to conventional approaches. In addition, it provides analytic formulations that, despite their complexity, can
be used to obtain intuitive understanding of the physics and dynamics of EM wave interaction with nanostructures with minimal
computation requirements. As a proof-of-concept, we applied such an efficacious method to design a new class of on-demand
reconfigurable optical metasurfaces based on phase-change materials (PCMs). The experimental results of the fabricated devices
are in good agreement with those predicted by the proposed approach. We envision that the integration of such a DL-based
technique with full-wave commercial software packages offers a powerful toolkit to facilitate the analysis, design, and optimization
of the EM nanostructures as well as explaining, understanding, and predicting the observed responses in such structures. It will thus

enable to solve complex design problems that could not be solved with existing techniques.
npj Computational Materials (2020)6:12; https://doi.org/10.1038/s41524-020-0276-y

INTRODUCTION

The field of nanophotonics has been the subject of extensive
expansion due to the unique capabilities of photonic nanostruc-
tures to control the propagation of electromagnetic (EM) waves.
Owing to their constituent nanoscale features, which spectrally,
spatially, and even temporally manipulate the optical state of the
EM wave, nanophotonic devices extend all the functionalities
realized by conventional optical devices in much smaller
footprints. Combined with the advances in nanofabrication
technologies, these nanostructures have been used to demon-
strate devices with enormous potential for groundbreaking
technologies addressing major challenges in state-of-the-art
applications, such as optical communications,' signal processing,?
biosensing,® energy harvesting,* and imaging,® to name a few. As
an example, newly-emerged metasurfaces (MSs)® ' two-
dimensional planar structures comprising of densely arranged
periodic/aperiodic arrays of well-engineered dielectric or plasmo-
nic inclusions, offer profound control of the EM wave dynamics
including amplitude, phase, polarization, and frequency in the
subwavelength regime.'>™"®

Despite extensive achievements in the fabrication and realiza-
tion of photonic nanostructures, the efforts on the development
of accurate and computationally efficient design and optimization
approaches for these nanostructures are still at early stages.'”
With the fast progress in forming more complex nanostructures
with several design parameters, the need for new design
approaches that can keep pace with the computational require-
ments for analysis and understanding of all possible design
options has become more imminent. In addition, realization of

next-generation nanodevices with potentially new physics
enabled through light-matter interaction at the nanoscale requires
significant knowledge about the role of different design
parameters in the functionality of a nanostructure.

Traditional design and optimization approaches for EM
nanostructures rely on either using analytical (or semi-analytical)
modeling'®?* or brute-force analysis of the nanostructure
through exhaustive search of the design parameter space.”® The
use of these approaches are limited to simple structures that could
be either analytically modeled or completely studied by an
exhaustive search technique with reasonable computation cost.
To improve the computation efficiency of such design and
optimization tools, evolutionary approaches (e.g., genetic algo-
rithm?”?® and particle swarm?®) rely on starting from a random
initial guess and converging to the final optimum. While reducing
the computation cost compared to brute-force approaches, such
techniques are not guaranteed to converge to the global
optimum of a problem (even by allocation of extensive computa-
tional resources). They are also limited to a single design problem
(i.e., the simulations must be completely repeated when a small
change in the nanostructure happens) and are computationally
expensive for large-scale problems due to the significant amount
of iterations to find the optimum design for a given device
functionality.

More recently, design and optimization approaches based on
deep learning (DL) techniques have been proposed and
implemented for the design of nanostructures.>*~" Different
reported approaches to date primarily rely on training a neural
network (NN) (see Fig. 1a) using the response of a set of devices
(found by numerical simulations) and using the trained NN to
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Fig. 1 Representation of a many to one problem. a A feed-forward NN for design and analysis of EM nanostructures; D and R represent
design and response parameters, respectively. b Representation of a one-to-one design landscape (or manifold) as the simplest class of
problems for solution with the NN in (a). ¢ Representation of a general (non-one-to-one or many-to-one) design manifold. Red dots represent
instances with same response features obtained with different sets of design parameters. The light-blue curve demonstrates the original
design manifold while the dashed line shows the estimated one obtained with conventional methods for solving one-to-one problem (e.g.,
the NN in a). d Representation of the same design manifold as in (c) with a solution obtained by just training the NN in (a) for some
intrinsically one-to-one region (outside the dead-zones); the non-optimal extrapolated manifold for the dead-zones is highlighted by

red color.

solve the inverse design problem. Despite impressing progress in
this area, the reported solutions mostly focus on solving simple
problems with reasonably smooth optimization landscapes®' that
have a one-to-one mapping of design parameter space to the
device response space (i.e.,, any given response can be obtained
by only a single set of design parameters) as shown in Fig. 1b,
where a vector of device response (r;) is achieved by a unique
vector of design parameters (d;). Unfortunately, most nanostruc-
tures of interest do not have this property. Figure 1c shows the
optimization landscape of a more general problem in which the
one-to-one relation between design parameters and output
response does not exist. This can result in convergence issues
for the NN used for optimization (i.e,, finding design parameters
for a given output response). Efforts on converting the problem to
a one-to-one mapping by removing some training data sets (see
Fig. 1¢)*® do not essentially help in solving the problem as most of
the design space is not covered by these training datasets. Such
approaches at most result in a NN that smooths out the
optimization dataset (see Fig. 1c¢) without converging to the
global optimum. Other proposed approaches (e.g., the use of
tandem networks®®) rely on first training a NN that relates the
design space to the response space (i.e., for the forward problem),
then cascading it as a pre-trained NN with another NN that relates
the response space to the design space (i.e., the inverse problem),
and finally training the resulting network (from the response
space to the design space) to avoid the non-one-to-one relation.
However, such techniques do not solve the main problem; they at
best smooth out the optimization landscape as shown in Fig. 1c.
Another notable recent approach is based on using generative
adversarial networks (GANs) to solve the inverse design pro-
blem.*? This technique is built on training a network to solve the
forward problem with zero error and use it to generate ground
truth data in each iteration. Training such a forward-problem-
solver network with zero error in a general design problem is a
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major challenge and may require excessive computational
resources. In the reported design problem, each desired output
needs extensive computation (200,000 iterations to reach the
convergence region for each structure),®> which may reduce the
value of using GANSs if a perfect forward problem solver exists with
comparable computation complexity (similar computations can be
used to solve the design problem by exhaustive search using the
perfect forward-problem solver). Despite impressing results, the
reported GAN-based approach will be limited to simple design
problems with non-complex nanostructure. Also limiting the
design space to a smooth (one-to-one) region is unable to
address the nonuniqueness challenge. The success of such
techniques highly depends on the complexity of the problem
and the selection of the design parameters in the one-to-one
region (outside the dead-zones in Fig. 1d) to converge to
acceptable answers. As a result, these approaches can be used
to design simple structures, which can also be designed using
alternative approaches. Finding a reliable approach to fundamen-
tally address this nonuniqueness issue (without limiting the
optimization landscape to the one-to-one region (or extrapolating
from it, see Fig. 1d) is still a major challenge in using DL based
approaches for the design of EM nanostructures.

Another challenge in using DL techniques to design complex
EM nanostructures is the large size of the response and design
spaces resulting in the need to train a large NN. As an example, to
study the spatial and spectral response of a MS with reasonable
accuracy, the response space must constitute the sampled EM
intensity in a two-dimensional space and in frequency with spatial
and spectral resolutions smaller than the smallest spatial and
spectral features of the output response, respectively. This
typically results in thousands of data points in the response space
and quickly rises as the structures with sharper spatial and spectral
features are designed. Combined with ever-increasing number of
design parameters in the nanostructures of recent interest, this
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results in a very large NN, which is difficult to be trained, even for
the problems with one-to-one optimization landscapes.

In this paper, we demonstrate a new approach for designing
complex EM nanostructures by addressing both the network-size
issue and the nonuniqueness issue. Our approach is based on
reducing the dimensionality of both the design space and the
response space through training multi-layer NNs, called auto-
encoders.3>? Once the dimensionality of the problem is reduced,
the problem converts into a one-to-one problem in the reduced
spaces, which can be solved with considerably less computational
complexity. In addition, by reducing the envisioned design
parameters to few number of more complex design parameters
(e.g., a nonlinear function of the weighted sum of the original
design parameters), we can obtain valuable intuitive under-
standing of the roles of different design parameters in the
response of the nanostructure. Such an efficacious approach
paves the way for understanding, design, and optimization of
complex EM nanostructures with far less computation complexity
than the alternative approaches. In addition, a trade-off between
the accepted error and the complexity (and time) of the
simulations can be used to solve different problems with desired
degrees of computation complexity or to obtain quick (approx-
imate) information about the role of design parameters in the
overall device performance. Dimensionality reduction (DR) is a
powerful technique in machine learning that has been used to
effectively solve problems in a wide range of applications
including robotics,”® optical tomography,*' face recognition,*
handwritten digit classification,*® remote sensing,* medical
science,” genetics,”® and electronics.””

To show the applicability of our approach, we demonstrate its
use for designing a new class of reconfigurable MS based on PCMs
to form wideband amplitude modulation of near-infrared (near-
IR) light.

RESULTS

Dimensionality reduction of the design and response spaces in
designing electromagnetic nanostructures

Figure 2 shows the schematic of the design approach based on DR
of the design and response spaces assuming that the optimization
landscape is nonunique (or many-to-one), i.e.,, more than one set
of design parameters can result in the same response. The original
forward problem is shown by path 1 in Fig. 2, where each point in
the design space (that includes a vector of dimension D
corresponding to a set of design parameters) correspond to a
point in the response space (which includes a vector of dimension
R) through a many-to-one relationship. A NN cannot be trained to
inverse this relation as explained above. This is the main
complication in the design and optimization problem. In our
approach, we first use the DR technique to reduce the
dimensionality of the response space as much as possible (i.e.,
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Fig. 3 An example for the one-to one DR. Each dot represents a
point in the original space that corresponds to a point (shown by a
dot) in the lower-dimensional reduced space.

reducing the size of the response vector r; in Fig. 1b) while
keeping the same number of points in the response space (see
path 2 in Fig. 2). This concept is schematically shown in Fig. 3 in
which a three-dimensional manifold in the response space is
reduced to a two-dimensional manifold, which includes the same
number of points in the response space, but each point is
represented by a smaller size vector. Each feature in the reduced
response space is related to the features of the original response
space through a well-defined nonlinear function. This is a one-to-
one process.

In the next step, we reduce the dimensionality of the design
space as much as possible (see path 4 in Fig. 2). In this process, the
redundant nature of the design space is removed resulting in a
one-to-one relation between the reduced design space and the
reduced response space (see path 3 in Fig. 2). After training the
relevant DR mechanisms in Fig. 2, the relation between the
original response space and the reduced design space (paths in
Fig. 2) will be one-to-one and thus, it can be simply inverted. Thus,
our design problem will relate the desired response to the
reduced design parameters (see path 5 in Fig. 2). The reduced
design parameters are related to the original design parameters
through a one-to-many relation that is analytically available
through the training process (i.e., in the form of a formula with a
series of nested Tanh() functions that model different nodes of
the trained NN for the encoder part of the pseudo-encoder). Thus,
we can find several design options by converting the resulting
optimum reduced design parameters to several sets of the original
design parameters. At this stage, design constraints (e.g.
fabrication imperfections, structure robustness, characterization
limitations, etc.) can be taken into account to choose the final
design parameters.

The heart of our approach is the effective implementation of
the DR technique to maximally reduce the dimensionality of both
design and response spaces, especially the former. Several DR
techniques have been developed in machine learning to facilitate
classification, data visualization, reduction of the computation
cost, etc. Among different options, principal component analysis
(PCA),*® kernel principal component analysis (KPCA),*® Laplacian
eigen map,”° locally linear embedding,”’ and autoencoder® are
the most effective techniques. Considering the features of these
techniques, we believe that the autoencoder is the most suitable
approach for solving inverse problems in general and designing
EM nanostructures in particular.

The general schematic of an autoencoder is shown in Fig. 4.
Autoencoder is a multilayer NN that can encode the high-
dimensional data into low-dimensional data (using the encoder
part in Fig. 4) and use another NN (see the decoder part in Fig. 4)
to decode and recover the high-dimensional data. In other words,
the autoencoder in Fig. 4 is a feed-forward NN where the input
layer and the output layer have the same structure and are
connected to each other with one or more hidden layers. The
number of neurons in the layer with minimum number of neurons
represents the dimension of the reduced space. This layer is
known as the bottleneck of the autoencoder. This way, an
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Fig. 4 Schematic architecture of an autoencoder for the DR
technique. The left half (i.e., encoder) reduces the dimensionality
(the bottleneck layer corresponds to the reduced space) while the
right half (i.e., decoder) brings the data back to the original space.
The complete autoencoder is trained to minimize the MSE.

autoencoder concentrates the data from a high-dimensional
manifold in a given space around a low-dimensional manifold or a
small set of such manifolds. The goal of an autoencoder is to map
an original set of input data {x;, x5, ---, x,} to a lower dimensional
set of output data {s;, s, **+, s,} (at the bottleneck) in which x; and
s; are vectors with size kx 1 and m x 1, respectively (m < k), and s;
contains the essential information of x;.

To find the mapping from high-dimensional to low-dimensional
data, the autoencoder in Fig. 4 should be trained with a
sufficiently large training dataset. The training part of the
autoencoder can be considered as an optimization problem
where the algorithm minimizes a cost function. The cost function
is a measurement of discrepancy between the output of the
autoencoder and the input data. The mean-squared error (MSE) is
used as the cost function of the autoencoder, and the error is
minimized using the back-propagation method.>?> Assuming the
output of the autoencoder structure in Fig. 6 for the input x; is
represented by x;, the reconstruction MSE of the trained
autoencoder is defined as:

1< )
MSE:EZ | xi — %13 )
i=1

Where 1 represents the number of validation (or test) instances
(not used for training) that are used to validate the trained
autoencoder (but not used for training) . The number of layers and
the topology of the NN is also found using an ad-hoc method (by
trial and error). The training dataset for the design of EM
nanostructures is obtained by using numerical simulation of the
structure using a random set of input design parameters.

In the approach shown in Fig. 2, we first reduce the
dimensionality of the response space by training an autoencoder
(see Fig. 5a). In the next step, we form a pseudo-encoder that
relates the original design space to the reduced response space as
shown in Fig. 5b. The reason for naming the structure in Fig. 5b a
pseudo-encoder is the fact that its input and output are from
different spaces (in contrast to a conventional autoencoder in Fig.
4). By training the pseudo-encoder in Fig. 5b to reach the
minimum size of the bottleneck layer, we reach the reduced
design space. Each parameter in this space is related to the
original design parameters through a nonlinear function defined
by the NN structure of the pseudo-encoder from the original
design space to the reduced design space (or the bottleneck) in
Fig. 5b. The training approach is similar to that explained for a
general autoencoder in Fig. 4 or Fig. 5a. The pseudo-encoder in
Fig. 5b corresponds to the paths 3 and 4 in Fig. 2, i.e,, these two
paths are trained together.

Once the DR of the two spaces are complete, we form a NN by
cascading the pseudo-encoder in Fig. 5b with the pre-trained
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decoder part of Fig. 5a to form a completely trained NN for solving
the forward problem as shown in Fig. 5c. The resulting NN in Fig.
5c relates the original design parameters to the original response
space using a unique set of analytic equations defined by different
layers of the NN. While this analytic relation is complicated for a
large-size network, it provides extremely valuable information
about the roles of different design parameters in the response of
the nanostructure with minimal computation complexity (techni-
cally by calculating the complex analytic formulas in a conven-
tional environment like MATLAB). However, the goal of this paper
is the design of EM nanostructures for which the inverse problem
has to be solved. For this purpose, we will use a two-step
approach. In the first step, we find the inverse of the part of the
NN in Fig. 5c that relates the reduced design space to the output
space. The resulting inverse network is shown in Fig. 5d. This is
easily achievable as the relation between the reduced design
space and the original response space is one-to-one (see path 5 in
Fig. 2). The NN in Fig. 5d allows us to obtain the optimal reduced
design parameters for any given desired response. This is the last
part in our approach where the DL approaches can be used. The
final step is to relate the reduced design parameters to the original
design parameters (i.e., the inverse of path 4 in Fig. 2). This is a
nonunique relation, i.e., it can provide several sets of design
parameters from a given reduced set of design parameters.
Fortunately, the encoder part of the pseudo-encoder in Fig. 5b
relates the reduced design parameters to the original design
parameters analytically (through the formulation of the underlying
NN at different layers). We can use these equations to move layer-
by-layer from the reduced design parameters to the original
design parameters. In this backward process, we can reduce the
number of possible solutions by imposing constraints such as
fabrication limitations. This approach can provide many possible
solutions for a design problem, which is expected due to the
nonuniqueness of the problem. Note also that within this design
problem, we can use the obtained knowledge about the role of
the design parameters (using the forward solver in Fig. 5¢) and the
relation between the reduced design parameters and the original
design parameters (using the encoder part of the pseudo-encode
in Fig. 5b) to reduce the complexity in solving the design problem.
In this paper, we use the analytic relation between the original and
reduced design spaces to completely search the original design
space to find the point(s) that correspond to the desired point in
the reduced design space.

In addition to solving the nonuniqueness issue, the approach in
Fig. 5 considerably reduces the computation cost by reducing the
dimensionality of the two spaces. It is clear that the training of the
pseudo-encoder that relates the design space to the reduced
response space (see Fig. 5b) requires much less computation
compared to training of a NN that relates the design space to the
original (non-reduced) response space. Furthermore, the calcula-
tion of the inverse NN in Fig. 5d does not impose significant
computation cost due to its one-to-one nature.

Application to the design of hybrid reconfigurable plasmonic-PCM
metasurfaces

To show the applicability of the design approach, we consider a
generic design problem for the implementation of a reconfigur-
able multifunctional MS enabling high performance optical
modulation as shown in Fig. 6. The metasurface (MS) in Fig. 6 is
composed of a periodic array of gold (Au) nanoribbons fabricated
on top of a thin layer of germanium antimony telluride (Ge,Sb,Te;
or in short GST), which is a non-volatile PCM whose index of
refraction can be significantly modified (e.g., from 4.5 to 7 in the
near-infrared region)>> when it undergoes transition from the
amorphous to the crystalline state in the near infrared regime or
vice versa. In addition, using GST in intermediate states between
amorphous and crystalline results in a wide range of tunability for
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Fig. 5 Schematic of the NN architectures. a Using an autoencoder to reduce the dimensionality of the response space (i.e., extract reduced
optical response features from the original response features). b The pseudo-encoder architecture, which relates the original design space to
the reduced response space while reducing the dimensionality of the design space (i.e,, extracting the reduced design parameters). ¢ A
complete model for the forward problem formed by cascading the pseudo-encoder architecture in (b) with the decoder part of the
autoencoder in (a). d The semi-inverse-problem model, which relates the original response space to the reduced design space as a one-to-one

problem.

Fig. 6 3D representation of the MS under study. A MS with
reconfigurable reflectivity formed by a periodic array of Au
nanoribbons (thickness: t) on top of a thin layer (height: h) of GST
on top of a SiO, substrate. The unit cell of the structure is composed
of three Au nanoribbons with different widths (w;, w,, and ws) and
pitches (p;, p2, and ps, respectively). Other design parameters are
the crystallization state of GST under the three nanoribbons (shown
by lc1, lc1, and I, respectively) and the height of the GST layer (h).
The phase of GST under each nanoribbon can be changed by
applying a voltage (V;, V,, and Vs, respectively). The incident light
normally illuminates the MS, and the spatial and spectral profiles of
the reflection from the structure is calculated as its response.

its index of refraction. The GST layer deposited on an optically
thick film of Au is patterned as shown in Fig. 6. By laterally
applying electric signals to the Au nanoribbons, the state of the
GST underneath that nanoribbon is controlled through resistive
heating.> In addition, by controlling the electric stimulus
intermediate states (between amorphous and crystalline) can be
obtained for GST.>®> We limit the number of GST transition states to
11 (i.e., amorphous, crystalline, and 9 intermediate states).>® The
supercell (limited to three different building blocks to prevent
excitation of high diffraction orders) of the MS in Fig. 6 is
composed of three Au nanoribbons with different widths (w;, w,,
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and ws) and 3 crystallization levels (I, lc2, lc3, corresponding to
three indices of refraction, see “Methods” for more details) of GST
underneath with the same height (h). The pitches of the 3 building
blocks of the supercell are represented by p;, pp and p;3,
respectively. As a result, the MS in this work has 10 design
parameters (i.e., dimensionality of the design space is equal to 10)
with different units (3 unit-less indices of refraction and 7 lengths
with units of nanometers).

As an interesting functionality, we are interested in amplitude
modulation of the incident light at A = 1600 nm with a considerable
bandwidth around the central wavelength. The MS in Fig. 6 is
illuminated with a plane wave of light with variable wavelengths in
the desired range (from 1250 nm to 1850 nm). The polarization of
the incident light is such that the electric field (ie, E,) is
perpendicular to the grating direction of the MS. The response of
the system is the MS reflectance (calculated as the far-field reflection
intensity divided by the intensity of the incident field and integrated
over a surface area equal to one supercell in the far-field). The
resulting reflectance is sampled at 200 equally-spaced wavelengths
in the 1250-1850 nm range. This results in a response space
dimensionality of 200. To obtain the data for training and validation
of the DR autoencoders in Fig. 5, we simulate the structure in Fig. 6
with 4000 randomly generated instances (3600 for training and 400
for validation) formed by randomly selecting the design parameters
in the acceptable variation ranges shown in the caption of Fig. 6.
The simulations were performed using the finite element method
(FEM) in the COMSOL Multiphysics environment (see “Methods” for
details).

In the next step, we use the training data to train a series of
autoencoders with different numbers of hidden layers (ranging from
3 to 9) to study the DR of the response space from 200 to different
values in the range of 1-20. For each autoencoder, MSE is calculated
by finding the square of the norm of the difference between the
reflectance vector obtained from the decoder part of the
autoencoder and that obtained from the FEM simulations (also
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called ground truth data) for each one of the validation data. Note
that each vector has 200 elements corresponding to the reflectance
at 200 selected wavelengths in the 1250-1850 nm range.

Figure 7a shows the calculated MSE as a function of the
dimensionality of the reduced response space. Figure 7b shows
the comparison of the actual reflectance spectrum for the original
data and the reconstructed data using the autoencoder for
different dimensionalities of the reduced response space. It is clear
from both Fig. 7a, b that the dimension of the response space can
be reduced from 200 to 10 with negligible MSE (less than 10 3).
This is a clear advantage of our optimization technique.

Among different autoencoder architectures tested for the
response space, the one with five layers (with the number of
neurons in consecutive layers being 200-50-10-50-200) is selected
based on its low MSE and computation costs to form the pseudo-
encoder architecture in Fig. 5b. We also choose four layers (10-20-
15-x) for the encoder part of the pseudo-encoder in Fig. 5b. For
each set of values for the dimensions of the reduced response
space and the reduced design space, we train the resulting
pseudo-encoder using the 3600 training data, and we calculate
the MSE by comparing the output of the pseudo-encoder with the
actual output using the 400 validation data. The results for four
different dimensionalities of the reduced response space are
shown in Fig. 8a. Figure 8b shows representative reflectance
spectra for three different values of the dimensionality of the
reduce design space. Using Fig. 8a, it is clear that the dimension of
the design space can be reduced from 10 to 5 without imposing
much error.

Using Figs. 7 and 8, we choose the dimensionality of the reduced
response space and the reduced design space to be 10 and 5,
respectively  (10-20-15-5-20-30-20-10-50-200). This considerably
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reduces the computation time as the dimension of the resulting
problem is defined in a 5x 10 rather than 10X 200. Using these
values, the final NN architecture for the analysis (or the solution of
the forward problem) of the MS in Fig. 6 is formed according to Fig.
5c¢. It is clear that the training of the pseudo-encoder that relates the
design space to the reduced response space (see Fig. 5b) requires
much less computation compared to training of a NN that relates
the design space to the original (non-reduced) response space.

To form a platform for designing MSs with an arbitrary response,
we first find the inverse of the network from the original response
space to the reduced design space as shown in Fig. 5d. This is not
computationally extensive due to the one-to-one nature of the
problem. For this purpose, the pre-trained encoder part of the DR
algorithm for the response space (left side of Fig. 5a) is combined
with a NN that connects the reduced response space to the reduced
design space. This added NN is trained using the same 3600 training
data to form the inverse network that relates the desired response
to the reduced design parameters. The resulting one-to-one trained
platform (see Fig. 5d) results in finding the five reduced design
parameters for the desired response. To find the 10 original design
parameters, we solve the one-to-many problem through an
analytical search approach using the encoder part of the pseudo-
encoder for DR of the design space (first part of the platform in Fig.
5b). This encoder part relates the original design parameters
analytically (through the NN formulation) to the reduced design
parameters. Thus, the exhaustive search of the design space is not
computationally extensive. We use MATLAB to perform this
calculation (sweeping each parameter over 10 possible values)
using the minimization of the MSE (defined by the integral of the
square of the difference between the desired and the resulting light
intensities over the operation bandwidth) as the optimization goal.
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Fig. 9 Achieved spectral responses for the full absorption in the
1500-1700 nm wavelength range. Responses of the optimal (D,)
and three other reasonably good designed structures (D,, D3, and
D,) with the goal of achieving maximum absorption in the
1500-1700 nm wavelength region (shown by the shaded rectangle).
The MSE and the values of the design parameters are shown in
Table 1. The blue line shows the reflectance spectrum in the OFF-
state (i.e., amorphous).

Table 1. Values of the design parameters for four totally different set
of design parameters (d;, d;, d, and d;) which each two results in
almost identical responses (see Fig. 13).

Design h ol s pa P2 P3 Wi Wy W

d; 50 0.7 0.7 08 600 700 800 480 140 160
d; 150 0.7 03 09 1000 600 400 500 180 120
d> 50 0.7 03 05 700 600 500 490 180 500
d; 75 1 0.7 0.8 400 1000 700 320 500 560

Ad,(10-D)/Ad,(5-D) for (d1, d7) and (d», d3) are (0.83/0.024) and (1.72/0.07),
respectively. h, w;, and p; {i=1, 2, 3} are in nm.

Figure 9 shows the results for the design of prefect light
absorber for operation in the 1500-1700 nm wavelength range
using the MS in Fig. 6. The desired response is zero reflectivity
over the entire operation bandwidth. The overall MSE for the
response of the optimal structure in Fig. 6 is 0.0147 MSE. The
reflectance for two other (non-optimal) designs with considerably
different design parameters are also shown in Fig. 9. The set of
design parameters along with the MSE for these three structures
are listed in Table 1.

To ensure the selected structure is indeed the optimal design,
we compared the MSE for its response with those of all training
instances. This comparison is graphically shown in Fig. 1 below,
and it confirms that the selected structure has the lowest MSE. The
advantage of the optimal design is clear both qualitatively (by
comparing the frequency response of the optimal structure with
those of the best three responses (with minimal MSE) in the
training data set as shown in Fig. 10a) and quantitatively (by
comparing the MSE of the optimal response with those of all 3600
training dataset as shown in Fig. 10b).

Understanding the physics of light-matter interaction

A main advantage of our approach is the possibility of investigating
the underlying physics of the device operation and obtaining
intuitive information about the roles of different design parameters
on its response. To show this capability, we use our approach with a
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pseudo-encoder (10-4-10-50-20-10) to model the MS in Fig. 6. Figure
11a shows the resulting pseudo-encoder with the dimension of the
reduced design space being 4 with green and red arrows
representing positive and negative weights, respectively. Note that
the DR of the design space is performed with only one encoder
layer. Figure 11b shows the values of the weights for the mono-layer
encoder. Each weight is multiplied by its corresponding design
parameter to form the inputs to the node of the bottleneck layer.
The larger the weight, the stronger the contribution of the
corresponding design parameter will be. This strength is also shown
in Fig. 11a by the thickness of the arrows that connect the nodes of
the two layers. As shown in Fig. 11b, the height of the structure (h)
plays an important role in changing the response compared to other
design parameters as h connects to all 4 nodes in the bottleneck
layer with reasonably strong weights. Moreover, the crystallization
levels |4, 15, and I3 can only change one of the reduced response
features as they mainly connect to only one node (the purple node)
in the bottleneck layer. As a result, as long as the total input to that
purple node is fixed, the response will stay the same regardless of
how the values of I, I, and |3 change. This conclusion is reached
by assuming a small error in training the pseudo-encoder and
neglecting the small weights (or arrows in Fig. 11a) that connect I,
I, and Il to the nodes of the bottleneck layer. To test this
conclusion, we vary |, lo, and I3 while keeping their weighted sum
(according to the trained pseudo-encoder) and all other 7 design
parameters for the MS in Fig. 6 constant, and we calculate the
response of the MS using brute-force COMSOL simulations (no
pseudo-encoder intervention). The results for two different weighted
sums of |, |, and | are shown in Fig. 11c. Figure 11c clearly
confirms our observation from the trained pseudo-encoder that I 4,
lo, and | effectively act as one design parameter (through their
weighted sum). Figure 11d shows the results of COMSOL simulations
when the structure height (h) is changed while keeping all other 9
design parameters fixed. The large range of variation of the
response in Fig. 11d clearly shows the importance of h as a design
parameter. It is interesting to see from Fig. 11d that different
responses for different values of h have low correlation while the
responses for different values of the weighted sum of I, I, and I3
(i.e, blues curves and red curves in Fig. 11c) show a similar trend
with different locations of peaks and valleys. This suggests that the
parameter h can be used to obtain different classes of responses
while the weighted sum of I, |, and |z can be used to finely tune
a given class of response. The details of the design parameters for
each case are shown in Table 2.

The important observations about the role of different design
parameters were obtained from our deep-learning approach
without taking any information about the physics of the structure
into account. Nevertheless, these observations agree with the
physical intuition about the structure in Fig. 6. Each unit cell in this
structure is composed of three plasmonic building blocks formed
between the Au layer underneath and each Au nanoribbon on the
top GST layer (see Fig. 6). Since the supermode of each building
block is formed by coupling of the surface plasmon polaritons at
the two Au layers, its properties strongly depend on the height of
the GST layer (h), which directly controls the coupling strength.>’
Thus, strong dependence of the MS response on h is expected.
Figure 12 shows the electric field patterns for the unit cell
structure in Fig. 6 for two different values of h, confirming the
strong dependence of the spatial mode profile on h.

To consider the effect of variation of the crystallization fractions
(Ic1, lez, and 1.3), we note that the reflection response of the overall
MS is essentially the sum of three responses defined by the three
plasmonic resonators in each unit cell. By combining three
wideband resonances with different resonance wavelengths, a
wideband reflection response is obtained. Figure 12 shows the
variation of the reflectance of the MS with frequency for a given
set of lo4, o, and |5 values (0.6, 0.7, and 0.8, respectively). The inset
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shows the field profiles of the three plasmonic resonators within
each unit cell at different wavelength regimes.

Due to pronounced light-matter interaction of the supermode
with the GST layer at the higher wavelength (i.e., 1650-1850 nm),
we expect that most of the resistive loss occurs in the building
block with high crystallization level (i.e., I.3) accommodating more
free charge carriers. This effect is clarified in the inset of Fig. 12 at
higher wavelengths (red border) showing that a good portion of
absorption takes place in the rightmost building block (i.e., 13).
Figure 12 also shows that the absorption loss in the middle
wavelength window (i.e., 1450-1650 nm, shown by green) occurs
mostly in the building block with lower crystallization level (i.e.,
the leftmost building blocks with (i.e., I,; and I). Finally, Fig. 12
shows similar contributions from the three building blocks at
lower wavelengths (e.g., 1250-1450 nm). This is due to the fact
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hich are connected to different design parameters. ¢ Red curves
sum for the purple node is the same. All other parameters are fixed.
n of the response using COMSOL (no NN) where h varies and all

that by increasing the level of crystallization in this regime, the
optical constant of GST varies significantly leading to decrease in
the light-matter interaction. This explains the collective role of |4,
lco, and I3 observed through training the pseudo-encoder. Note
that obtaining this observation from the basic device properties
was not as trivial as that of the role of h.

While some of the conclusions about the role of design
parameters in Fig. 6 obtained by training the pseudo-encoder
could also be obtained by the underlying mode properties of the
DL-based (e.g, by analyzing the modes of the plasmonic
resonators), the ability of our approach in providing useful
information about the physics of wave-matter interaction in
non-trivial structures (e.g., nonlinear and dispersive metamaterials)
will be extremely valuable. Indeed, by using this approach to find
and understand new phenomena in such non-trivial structures,
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Fig. 12 Simulated absorption spectra for the proposed broad-
band near-perfect absorber. Inset shows the resistive loss
corresponding to the lower wavelengths (i.e, 1250-1450 nm),
intermediate wavelengths (i.e.,, 1450-1650 nm), and higher wave-
lengths (i.e., 1650-1850 nm) of the curve. I, lo, and |3 represent
0.6, 0.7, and 0.8 crystallization level of the GST layer, respectively.

new ideas for forming new classes of devices can be generated.
This is a major advantage of our approach over all existing design
approaches, especially those that rely on multiple brute-force
simulations of the structure for different design parameters.

Note that the MSE (about 10%) in relating the design and
response spaces using the mono-layer pseudo-encoder in Fig. 12a
is larger than that of a more complex pseudo-encoder (e.g., that in
Fig. 5). Nevertheless, the intuitive understanding of the roles of the
design parameters achieved with the simple pseudo-encoder is
completely valid. While the mono-layer structure provides simple
and helpful information about the roles of the design parameters,
more sophisticated relations (and physics) can be learned by using
a pseudo-encoder with more layers and studying the NN weights
in different layers. It is also evident that the algorithms selected for
understanding the physics of the wave-matter interaction are in
general different from those used for design and optimization of
the structure to achieve a desired response. In the latter the
minimization of the MSE in the input-output relation is critical
while in the former, it is of secondary importance.

DISCUSSION

Figure 9 and Table 1 clearly show the ability of our approach in
designing MSs with considerably reduced computation complex-
ity. Figure 9 obviously verifies the good modulation depth
(between ON- and OFF-state) of the optimized structure. They
also show the importance of the understanding of the many-to-
one nature of the design problem. Considering the many options
for the original design parameters that correspond to a single set
of reduced design parameters, we can easily enforce the
fabrication restrictions and other design preferences in the last
part of the design approach and find a set of design parameters
that results in a close-to-optimal response. It is important to note
that the availability of the analytic relation between the original
and reduced design spaces makes the brute-force optimization
(e.g., using analytic search) computationally feasible even for a
large number of design parameters. Nevertheless, more sophis-
ticated constrained optimization techniques can be used to solve
the last (i.e, many-to-one) part of the design problem with explicit
inclusion of the fabrication and other design-related constraints.
Such techniques are currently under investigation and will be the
subject of future publications.
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A unique feature of our DR-based approach is the computation
simplicity while appreciating the many-to-one nature of the
problem. By not considering the latter explicitly, several other
existing NN-based techniques are technically limited to only
smooth-enough problems, or they require apriori assumptions to
limit the search for the optimal solution in to a given region in the
design space, where the relation to the response space is one-to-
one (as discussed in “Introduction”). Nevertheless, by reducing the
dimensionality of the problem, our approach requires less
computation than any other alternative. For example, in the
design problem studied here, we reduced a 10 x 200 dimensional
problem to a 5x 10 one.

Compared to brute-force optimization approaches (e.g., exhaus-
tive search), our technique requires far less computation. For
example, by assuming only 10 possible values for the 7 analog
variables (i.e., h, wy, w,, and ws, p;, p2, and ps3) and 11 values for
the discrete ones (i.e., Ic1, lca, I3) in the design problem in Fig. 6,
the exhaustive search algorithm requires the complete EM
simulation of the structure for more than 10'° times, which is
essentially intractable. However, our optimization requires only
4000 EM simulations along with the training process that requires
far less computations. Indeed, the entire training of the forward
and inverse parts of the platform in Fig. 5 for the design problem
in Fig. 5 (results are shown in Fig. 9) took less than 3 hours using a
simple personal computer with a 3.4 GHz core i7-6700 CPU and
8 GB of random access memory (RAM).

It is important to note that the key computation advantage of
our proposed technique is for the complete optimization process.
Here, the roles of DR and the training of the autoencoder and the
pseudo-encoder are to: (1) convert a large non-one-to-one
problem into a combination of a large one-to-one problem and
a small non-one-to-one problem, and (2) enable a reliable
approach for finding the global optimum without requiring
intractable brute-force approaches, and (3) provide intuitive
information about the roles of design parameters to form a
smarter training set to further reduce computation. As a result, we
are able to demonstrate an optimization technique, which
requires far less computation than the existing techniques (e.g.,
brute-force approaches, evolutionary approaches, and simple
neural-network-based approaches).

The simulation of the structure for achieving training data is
indeed the most computationally intense part of the solution. The
main advantage of the DR technique is to avoid using the
conventional brute-force (e.g. exhaustive search) or evolutionary
techniques. In addition, compared to techniques based on
training a conventional NN to solve the problem, the DR
technique is superior by: (1) addressing the many-to-one issue
and making a more reliable path for design and optimization, (2)
providing intuitive information about the dynamics of the
problem, and (3) providing intuitive information about the relative
importance of different design parameters, which can be used to
form a smarter grid for generation of the training data (i.e., using
less simulation of the electromagnetic problem), and (4) requiring
less computation for training (under the same size of the training
data) by breaking the training process into two steps of training
the autoencoder and training the pseudo-encoder, which have
considerably fewer number of nodes.

While the role of DR techniques in reducing the computation
complexity and the severity of the nonuniqueness challenge is clear,
there is a possibility that the relation between the reduced design
space and the response space in Fig. 5d remains mildly many-to-one
(although much more manageable than that between the original
design space and the response space). The performance of this
technique becomes closer to one-to-one once the optimal
dimension for the reduced design space is selected. While this is
currently performed using trial and error, more rigorous approaches
for improving this property of the DR techniques should be
considered in future. Nevertheless, by treating the last stage of

npj Computational Materials (2020) 12



np)

Y. Kiarashinejad et al.

10

solution (i.e,, from the reduced design space to the original design
space) as a many-to-one problem, the risk of missing viable solutions
is highly reduced compared to existing techniques. A rigorous
mathematical study of the conditions for the dimensionality of the
reduced spaces from machine-learning point of view can provide
more solid guidelines in selecting the dimensionality of the reduced
spaces. However, such a rigorous mathematical study is outside the
scope of this paper.

To show the effect of the DR on the non-uniqueness challenge,
we select four totally different sets of design parameters (d;, d;, da,
and d5) with each two (i.e,, d; and d; on one hand and d, and d; on
the other hand) result in almost identical responses (see Fig. 13). We
define a normalized distance metric (Ad,) to evaluate the ability of
the pseudo-encoder in solving the non-uniqueness challenge.

2) 1d: — djll3

Adﬂ(’y}) = ( ’ (2)
N) 3w lldi — dill3

where N and Ad, (i, j) represent the number of training samples and
the normalized distance between the two design sets i and j,
respectively. In the ideal case, we expect Ad,, to become zero in the
reduced design space for original designs with the same response
(e.g., di and d7). Our calculations show that Ad,, drops by a factor of
30 (0.83-0.024 for the distance between d; and d7, and from 1.72 to
0.07 for the distance between d, and d; after reducing the
dimensionality of the design space using the pseudo-encoder. We
tried this study with several cases and found similar reduction in Ad,,
for structures with similar responses. Note that the little difference
between the actual responses of the two designs (e.g,, for d; and d;
in Fig. 13) contributes partially to the non-zero Ad,. This clearly

--d;
_dz
- d

Reflectance
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Wavelength (nm)

1800

Fig. 13 Comparison of the mutual distances in original and
reduced spaces. Four totally different set of design parameters (d;,
d;, da, and d3) which each two results in almost identical responses.
The Ad, and the values of the design parameters are shown in
Table 2.

Table 2. The design parameters and the resulting MSE for the optimal
design and three good designs for the structure in Fig. 6 to achieve
maximum absorption in the 1500-1700 nm wavelength region. h, w;
and p; {i=1, 2, 3} are in nm.

Design h vl la P P2 P W; w; ws MSE

D, 190 0.5 06 0.7 650 650 550 350 500 200 0.0147
D, 190 0 0.2 0.8 650 650 350 450 250 250 0.0149
Dy 190 0.5 0.1 0.7 650 450 450 200 350 300 0.0152
Dy 190 03 06 0.8 650 550 550 250 300 450 0.0172

npj Computational Materials (2020) 12

shows that the DR performed by the pseudo-encoder is capable of
reducing the severity of the non-uniqueness problem considerably.

Note that the level of computation (for training, finding the
inverse network, and moving from the reduced design space to the
original design space) for this approach depends on the problem
complexity. It is expected that structures with sharp spectral features
require more training instances to converge. Also, in extreme cases
of responses with radically varying spectral (or spatial) features and
very well selected design parameters (with not much redundancy in
the design and response spaces), the DR technique may not reduce
the size of the overall network considerably. Nevertheless, even for
such extreme cases, this technique can solve the non-uniqueness
issue and result in the global optimum although at less computation
advantage compared to majority of the mainstream design cases. To
show the ability of our technique to design structures with sharp
features, we have applied it to several such structures, and the
results are shown in the Supplementary Information. In addition, as
an experimental proof-of-concept, a simpler version of the
investigated reconfigurable MS here was fabricated and tested.
The measured reflection responses are in agreement with those
results obtained using the DR technique (see Supplementary
Information).

While the selected structure in Fig. 6 has enough complexity
through 10 design parameters to show the capability of the DR
technique, our technique can be used for studying far more
complex structures with a reasonable number of training data. To
push the limits of applicability of this technique with reasonable
computation, development of more intelligent sampling techni-
ques for reducing the number of simulations for obtaining training
data will be helpful.

In summary, we demonstrated here a new DL-based approach for
the design of EM nanostructures with a wide range of design
possibilities. We showed that by reducing the dimensionality of the
response and design spaces using an autoencoder and a psuedo-
encoder, we can convert the initial many-to-one problem into a one-
to-one (or in the worst case, close to one-to-one) problem plus a
simple one-to-many problem that can be solved using brute-force
analytical formulas. The resulting approach considerably reduces the
computational complexity of both the forward problem and the
inverse (or design) problem. In addition, it allows for the inclusion of
the design restrictions (e.g., fabrication limitations) without adding
computational complexities. It also provides valuable information
about the roles of design parameters in the response of the EM
structure, which can potentially enable new phenomena and
devices. Finally, this technique can be extended to solve many
different optimization problems in a wide range of disciplines as
long as enough data for training the incorporated NNs are provided.

METHODS

The full-wave EM simulations were carried out using the finite element
method (FEM) enabled by linking the commercial software package
COMSOL Multiphysics 5.3 (wave optics module) with MATLAB to expedite
the design, optimization, and analysis processes. Floquet periodic and
perfectly-matched layer boundary conditions were used along transverse
x-axis and the z-axis in Fig. 6, respectively. The structure was assumed
infinite along the y-direction. A linearly polarized planewave of light,
excited the MS in the wavelength range of 1250-1850 nm. The refractive
index (n) and absorption coefficient (k) data for amorphous and crystalline
GST, Au, and SiO, were obtained from the literature.®*° The computation
domain was meshed using triangular elements with a maximum size of Ao/
(10 n) in SiO, and GST, and of Ay/50 in Au with Ag being the free-space
wavelength. The effective dielectric constant associated with the
intermediate states of GST were approximated via the effective medium
theory. Among different options, Lorentz-Lorenz formula more accurately
describes effective permittivity eq{Ao) as:®°

Eeff()\o) —1 _ GC(Ao) -1 €, ()\0) -1

a
carllo) 2 e —1)x

cc(ho) + 2 calho) 1 2° @)
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where ¢(Ag) and ¢,4(Ag) are the permitivitties of the crystalline and
amorphous GST, respectively, and /., ranging from 0 (amorphous) to 1
(crystalline), is the crystallization fraction of GST.
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