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Machine learning is an umbrella term describing the use of 
statistical techniques and numerical algorithms to carry 
out tasks without explicit programmed and procedural 

instructions. Machine-learning algorithms are widely used in many 
areas of engineering and science, with particular strengths in clas-
sification, pattern recognition, prediction, system parameter opti-
mization and the construction of models of complex dynamics from 
observed data. Machine-learning tools have been widely applied in 
fields such as control systems, speech processing, neuroscience and 
computer vision1.

In optics and photonics, early applications of machine learn-
ing have mostly been in the form of genetic algorithms for pattern 
recognition2, image reconstruction3, aberration corrections4 or the 
design of optical components5,6. More recent work has focused on 
the analysis of large datasets7,8 and on inverse problems where the 
superior ability of machine learning to classify data, to identify hid-
den structures and to deal with a large number of degrees of free-
dom have led to many significant results. Particular areas of success 
include in the design of nanomaterials and structures with specific 
target properties9–11, label-free cell classification12, super-resolution 
microscopy13,14, quantum optics15 and optical communications16–18.

In addition to applications in the general area of data process-
ing, there is particular potential for machine-learning methods to 
drive the next generation of ultrafast photonic technologies. This 
is not only because there is increasing demand for adaptive control 
and self-tuning of ultrafast lasers, but also because many ultrafast 
phenomena in photonics are nonlinear and multidimensional, with 
noise-sensitive dynamics that are extremely challenging to model 
using conventional methods. While advances in measurement tech-
niques have led to substantial progress in experimental studies of such 
complex dynamics, recent research has shown how machine-learning 
algorithms are providing new ways to identify coherent structures 
within large sets of noisy data, and can even potentially be applied 
to determining underlying physical models and governing equations 
based on only the analysis of complex time series.

Our aim here is to review a number of specific areas where the 
promise of machine learning in ultrafast photonics has already been 
realized, and to also consider challenges and future directions of 
study as well as applications where substantial impact is expected 
in the coming years. Before presenting specific details, we first  

illustrate in Fig. 1 an overview of different machine-learning strate-
gies and associated architectures, listing the core concepts, imple-
mentation methodologies and applications where these have been 
applied in ultrafast photonics.

Laser design and self-optimization
In this section, we give an overview of the use of machine learning 
in laser design.

Self-tuning of ultrafast fibre lasers. Ultrafast lasers are essential 
tools in many areas of photonics, including telecommunications, 
material processing and biological imaging19–23. They have also 
played a central role in several Nobel prizes awarded for femto-
second coherent control (1999); the development of the preci-
sion frequency comb (2005); and, more recently, the generation 
of high-power femtosecond pulses via chirped pulse amplification 
(2018). Although some ultrafast sources are based on relatively 
simple designs, the operation of many important laser systems is in 
fact very complex, with dynamic pulse shaping determined by the 
interplay between a range of nonlinear, dispersive and dissipative 
effects24. Although this complexity certainly creates challenges in 
controlling and optimizing the laser emission, it also offers consid-
erable performance advantage not available with simpler systems. A 
key challenge is then to harness this complexity.

The difficulty in optimizing a particular ultrafast laser arises 
from the number of degrees of freedom (or control parameters) that 
need to be balanced to achieve stable operation or to reach a specific 
dynamical regime. Of course, efforts to develop self-optimized or 
autotuned lasers have been made for many years, with the dominant 
approach being to linearly sweep through a subset of the available 
parameter space while monitoring the laser output and using a feed-
back loop to obtain and maintain a desired operating state. While 
this is a straightforward approach for simpler laser designs with 
limited parameters, it becomes intractable when the laser operation 
depends on many degrees of freedom, or when multiple output 
characteristics need to be optimized simultaneously. Moreover, 
there is an increasing demand in both research and industrial appli-
cations for fully autonomous operation and active realignment in 
the presence of external perturbations, as well as for the ability 
to make dynamic changes in pulse characteristics adapted to the  
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target environment (for example, propagation medium or material). 
It is for such systems with greatly added complexity that approaches 
based on machine learning are especially promising and desirable.

An important example here is the widespread fibre laser, where 
polarization control, pump power, spectral filtering and loss com-
bine to create a wide range of possible operating regimes governed 
by a rich landscape of nonlinear dynamics25,26. Depending on the 
exact choice of parameters, the same laser can exhibit very differ-
ent behaviour: continuous-wave lasing, noise-like pulse generation, 
Q-switching, mode locking, multiple pulsing and bound states. It is 
for this multivariable optimization problem where machine learn-
ing has recently led to a number of dramatic improvements. The 
general approach has been to combine an algorithmic feedback loop 
together with the electronic control of intracavity elements varying 
polarization, pump power and spectral filtering. Figure 2 shows a 

generic illustration of machine-learning strategies, control elements 
and output parameters for optimization of ultrafast fibre lasers. 
Specifically, Fig. 2a illustrates the training phase where control 
electronics and advanced measurement devices are used to probe 
the parameter space and map the corresponding operation states, 
respectively. Collected data are then fed to machine-learning algo-
rithms for training. Figure 2b shows the self-tuning regime where 
the operation state of the laser is characterized in real time with 
a simplified measurement system fed into the machine-learning 
algorithm controlling the electronics to lock the system to a desired 
regime. This is where machine learning is particularly powerful 
as, once trained, the algorithm allows rapid parameter selection 
for optimum operation. Examples of machine-learning algorithms 
that can be used are highlighted in Box 1, and general guidelines in 
applying them are provided in Box 2.
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Fig. 1 | overview of the main machine-learning concepts and implementations that can be used in ultrafast photonics. The figure illustrates the core 
concepts and corresponding implementation methodologies as delimited by the coloured arcs, and links these to particular applications where these have 
been applied in ultrafast photonics. There are also other concepts including semi-supervised learning and reinforcement learning, which use some of the 
implementations mentioned in the figure, but these have yet to be exploited in an ultrafast context. Of course, we also stress that all these methods have 
been used in many other fields of science in addition to the ones shown here.
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Ultrafast fibre lasers mode-locked by nonlinear polarization 
evolution (NPE) are particularly complex, because a change in the 
polarization state affects both spectral and temporal pulse shaping, 
as well as the gain-to-loss balance in the cavity due to the intrin-
sic saturable absorber role played by the polarization-dependent 
losses. The first studies combining an algorithmic feedback loop 
with some cavity control parameter were in fact proof-of-concept 
numerical simulations of an NPE fibre laser, where it was shown 
that multipulsing instability could be reduced via filters optimized 
with a genetic algorithm27, and that stochastic changes in environ-
mentally induced birefringence could be mitigated by applying a 
singular value decomposition method28 or using variational auto-
encoders on the birefringence state map29,30. This modelling was 
rapidly followed by an experimental implementation using a sin-
gular fitness function to identify self-starting regimes in an NPE 
laser31. A number of subsequent experiments for various laser 
configurations (NPE, ring cavity and figure of eight) have used 
genetic algorithms to achieve self-tuning and autosetting in differ-
ent regimes such as Q-switching, mode locking, Q-switched mode 
locking or the generation of on-demand pulses with different dura-
tion and energies32–36.

Table 1 summarizes a selection of results that have been 
obtained so far (extended from ref. 37), also providing the charac-
teristics of the particular algorithms used in each case. In most of 
these studies, the feedback loop typically uses an advanced search 
or genetic algorithm targeting a desired optimal state based on 
some particular fitness or objective function as the reference cri-
terion. Although these results are highly promising, genetic algo-
rithms have to be carefully designed due to their sensitivity to the 
initial choice of parameters, which can lead the fitness function 
to converge towards a local optimum. They also cannot accom-
modate for long-term dependencies, and the fitness function typi-
cally monitors a single parameter limiting the operating regime 
that can be achieved. Another important drawback of genetic algo-
rithms is their relatively slow convergence speed on the scale of 
minutes or even hours (Table 1). However, recent developments 
have shown that one can reduce this time considerably using algo-
rithmic modifications that can mimic human logic, with the pos-
sibility to lock the laser to a desired operating state and to recover 
to this state from perturbation in less than one second38,39. Further 
improvement in self-tuning speed is likely to require algorithms 
that also include models of the pulse-generating mechanism to 
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Fig. 2 | illustration of machine-learning strategies for optimization and self-tuning of ultrafast fibre lasers using control of intracavity elements via a 
feedback loop and control algorithm. a, Training phase where control electronics acting, for example, on the polarization state (electronic polarization 
controller (EPC)) sweep the parameter space to map different operating states of the laser to be used as inputs to the control algorithm (Box 1). Guidelines 
for algorithm and parameter selection are given in Box 2. In the case of a search algorithm, the training phase is not necessary. Output characteristics are 
measured by diagnostics such as an optical spectrum analyser (OSA), fast photodiode (PD) and oscilloscope (OSC), or radio-frequency spectrum analyser 
(RFSA), and subsequently used as input to the control algorithm. b, Machine-learning-assisted operation where the laser operation is measured in real 
time and fed into the control algorithm.
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provide more targeted control. Unfortunately, while models based 
on nonlinear Schrödinger-like equations (NLSE) are generally able 
to reproduce experimental characteristics qualitatively, quantita-
tive comparison with experiments remains challenging. This is 
because accurate modelling necessitates the knowledge of a wide 
range of parameters that are not readily accessible in practice (for 
example, the random birefringence in the fibre). Ultrafast lasers 
are also stochastic systems and the impact of noise can generally 
be reproduced via only computationally intensive Monte Carlo 
simulations that require the analysis of a very large amount of data. 
One can anticipate that the use of machine-learning techniques for 
pattern recognition combined with the latest advances in real-time 

measurement techniques40,41 could lead to better understanding of 
ultrafast laser dynamics, allowing for the construction of laser sys-
tems with improved robustness.

Control of coherent dynamics. In addition to directly control-
ling laser emission as described above, there is widespread use of 
extra-cavity shaping technology to modify the characteristics of 
ultrashort pulses and other light sources used in particular appli-
cations. Because such optimization can involve multiple param-
eters that are interconnected in complex ways, this is an area where 
machine learning can clearly surpass other forms of manual or par-
tially automatized control.

Box 1 | examples of machine-learning algorithms

Genetic algorithms. Genetic algorithms belong to a family of evo-
lutionary algorithms that are inspired by biological evolution. A 
(random) initial population of genes (system parameters) is first 
evaluated by a fitness function, and the parents of the next gen-
eration are selected according to the fitness score. The reproduc-
tion includes a crossover of genes between the parents to create 
children that may undergo a mutation in which individual genes 
are randomly altered. Genetic algorithms may also include elitism, 
where the best individuals are cloned to the next generation.

Feed-forward neural networks. Feed-forward neural networks 
consist of an input layer accepting input data x, multiple hidden 
layers of basic computational units (neurons or nodes) that perform 
operations on the data using various weights and a nonlinear 
activation function, and an output layer that computes the 
network output y for regression or classification. In feed-forward 
neural networks, the information flows forward from the input 
layer through the hidden layers to the output layer.

Convolutional neural networks. Convolutional neural networks 
are a special type of feed-forward neural network where the 
input is convolved with a set of filters or kernels, followed by 
nonlinearity. The resulting feature map is then downsampled by a 
pooling function reducing the data’s dimensionality by combining 
nearby points into a single value. The convolution and pooling 
operations can be followed by additional convolutional layers to 
extract further relevant information from the previous feature 

maps. The output may then be flattened into a vector form for 
classification or regression tasks.

Unsupervised learning. This refers to label-free statistical tools for 
exploratory data analysis without prior knowledge about the data 
or system. The goals of unsupervised learning techniques typically 
include finding inherent patterns and structures to partition 
data into natural groups or clusters according to coordinates 
(for example, x1 and x2), or creating latent variable models for 
dimensionality reduction and data visualization.

Recurrent neural networks. Recurrent neural networks are 
a special type of neural network that are used for processing 
temporal/sequential data. Their topologies include intralayers 
and nodes with recurrent connections that store the network 
information from the previous input values. The hidden state of 
the recurrent nodes ht is passed on to the next time step such that 
the output of the recurrent layer yt+1 depends on both the new 
input xt+1 and the previous hidden state ht.

Reservoir computing. Reservoir computing is a particular class 
of recurrent neural network. In reservoir computing, the input 
Win and recurrent layer connections W do not participate in the 
training but instead they are pre-defined in an ad hoc fashion and 
are often simply drawn from a random distribution. Training only 
modifies readout weights Wout and the usually complex neural 
network optimization becomes a simple matrix inversion that can 
be computed in a single step.

Widespread and promising machine-learning architectures for ultrafast photonics. a, Genetic algorithm. b, Feed-forward neural network.  
c, Convolutional neural network. d, Unsupervised learning. e, Recurrent neural network. f, Reservoir computing. The different algorithms can  
be used as indicated: in pre-training before being applied to a particular experimental system, for real-time optimization and tuning, or a  
combination of both where the algorithm is pre-trained and subsequently updated during system operation.
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For example, pulse compression to a transform-limited duration is 
essential to femtosecond spectroscopy that uses few-cycle laser pulses 
to probe physical or chemical interactions. Recently, it has been 
shown how an adaptive neural network algorithm can control a pulse 
shaper and accelerate significantly the compression implementation 
with a convergence speed 100 times faster than that obtained using 
more conventional evolutionary algorithms (Fig. 3a)42. Similarly, 
a neural network was used to determine and optimize the param-
eters of a pulse-shaping system composed of a series of dispersive 
and nonlinear fibre elements to generate arbitrary pulse waveforms 
(parabolic, triangular or rectangular) of desired duration and chirp43.

Genetic algorithms can also be used for these purposes, and 
their application to solve highly nonlinear optimization prob-
lems such as fibre supercontinuum generation has also been 
very successful44–47. Using custom pulse-train preparation via an 
integrated pulse-splitter, a genetic algorithm was used to opti-
mize supercontinuum dynamics to maximize spectral intensity in  
specific wavelength bands47 (Fig. 3b). In another study, it has been 
shown how Gaussian-like peaks could be generated at desired 
wavelengths in a supercontinuum spectrum using a genetic 
algorithm to tailor the spectral phase of the incident ultrashort 
pulses46. Genetic algorithms have also been applied to the design 

Box 2 | General considerations when applying machine-learning models

Choosing an architecture and associated parameters. Neural 
networks are universal function approximators whose perfor-
mance significantly depends on their hyperparameters (variables 
that determine the network structure and training). Selecting the 
optimum architecture (Fig. 1 and Box 1) and tuning the hyper-
parameters often involves significant heuristics, exhaustive scans, 
trial and error, and leveraged optimization tools (genetic algo-
rithms99,100 or Bayesian methods101,102). Nevertheless, one may con-
sider the following guidelines to select an appropriate architecture 
and hyperparameters: a feed-forward neural network is a good 
choice if the map from input to output lacks temporal context. This 
is typically the case when one considers input–output mappings of 
‘single pass’ systems such as pulses undergoing nonlinear propaga-
tion, where fluctuations are expected to be independent and un-
correlated, and also for particular classes of similarly (partially) 
uncorrelated instabilities in Q-switched lasers. If data contain 
structure along a particular input dimension (for example, space, 
time or wavelength), architectures including filters such as convo-
lutional neural networks are better candidates; one may employ 
fully connected topologies for input data apparently lacking such 
features. If the output is expected to depend on current and past 
input data, recurrent topologies (long short-term memory, gated 
recurrent units or reservoir computing) should be used.

Accuracy generally increases with the number of hidden layers 
or nodes. The number of layers, nodes and training epochs can be 
increased until the validation error starts increasing (even if the 
training error still decreases). Note that too many nodes can lead 
to overfitting and reduce generalization (the ability of a trained 
model to adapt accurately to data outside the initial training 
dataset). Continuously reducing the number of nodes for deeper 
layers is a common strategy to improve generalization, and two to 
three hidden layers comprising 50 to 1,000 nodes seem sufficient 
for most tasks in ultrafast photonics. A neural network’s inference 
quality is quantified by a cost function such as mean-squared or 
root-mean-squared error. The root-mean-squared error penalizes 
small divergences more heavily and can be employed when fast and 
accurate convergence is essential. Network weights are typically 
initialized randomly, and popular activation functions are the 
rectified linear unit and the sigmoid nonlinearity. The rectified 
linear unit is computationally less expensive and avoids vanishing 
gradients, while the sigmoid’s upper limit makes blowing-up 
solutions less likely.

Selecting training data. There is generally no one-size-fits-all 
criterion to determine the volume of training data needed for a 
specific network and task. Where possible, one can be guided by 
available examples of comparable problems, and more generally, 
an initial guess can be obtained by considering the number of 
classes (output neurons), relevant input features (for example, 

optical modes) and parameters of the underlying model. One 
can then continuously increase the volume of training data 
until the validation error stagnates. The training data should be 
representative of the system’s possible states, and therefore sample 
uniformly the system’s phase space. This can be challenging, 
especially for ultrafast nonlinear systems, which may rarely 
visit specific outlier regions (so-called skewed dataset), and can 
lead to degraded performance in testing. Feeding representative 
datasets is also not always possible during experiments, and 
data augmentation via simulation is an alternative approach. It 
is also important to normalize training data to the ‘useful’ range 
of the neurons’ nonlinear response (around unity) to prevent the 
network operating in the linear or saturated regime.

Avoiding overfitting. Unlike in genetic algorithms, overfitting 
can occur in neural networks, typically when the testing error 
is large compared with the training error. The risk of overfitting 
may be reduced using the following strategies: simplification to 
reduce the network complexity; data augmentation by increasing 
the fraction of noisy data during training; cross-validation where 
division of data into training and testing sets is varied during 
training; early stopping where training is stopped when the testing 
error starts increasing; regularization by including penalties in the 
system’s loss function; drop-out by randomly removing individual 
connections during training.

Robustness and transfer learning. Ultrafast photonics systems 
are generally sensitive to their environment. Enabling stable and 
robust operation is another key objective for machine learning. 
Performance degradation upon a change of environmental 
conditions will mostly depend on the parameter space and regimes 
explored during training and testing. It is therefore important to 
include training data that incorporate possible environmental 
variations (see also ‘Selecting training data’). Using unsupervised 
learning to determine the dynamic relation between external 
conditions and system output is another approach.

A related question is ‘transfer learning’, or how a neural network 
architecture optimized for a particular system can be ‘transferred’ 
to a different yet related problem. In particular, the output of an 
ultrafast system can be divided into different regimes depending 
on the system parameters. This is particularly true for mode-locked 
laser pulses, which typically correspond to fundamental solitons, 
dissipative solitons or periodic breathers depending on the laser 
dispersion, nonlinearity, gain, loss and filtering. Transfer learning 
may then use training data generated with simplified mathematical 
models103 or experiments with reduced complexity. In fact, transfer 
learning is in itself an important topic of machine-learning 
research and from that point of view, ultrafast photonic devices 
could be ideal testbeds for investigating transfer learning problems 
in general.
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of fibres with optimized dispersion and nonlinearity coefficient 
to maximize the bandwidth of the coherent supercontinuum in 
the mid-infrared44.

Ultrafast characterization. A central element in the application of 
machine learning to tune an ultrafast laser is the feedback loop cou-
pling the emitted pulses with the laser cavity parameters. Although 

Table 1 | comparison of machine-learning tuning approaches in ultrafast fibre lasers

Laser system control 
element(s)

Fitness function(s) Type of algorithm(s) Targeted regime/
parameters

Advantages Disadvantages Speed

NPE fibre 
laser38,39,41

Electrical 
polarization 
controller

Different for 
different regimes

Rosenbrock search 
algorithm, random 
collision recovery, 
genetic algorithm

Fundamental 
and harmonic 
mode locking, 
Q-switching and 
Q-switched mode 
locking

Versatile, real 
time, various 
regimes of 
operation

Limitations 
of real-time 
techniques 
to detect all 
classes of laser 
instability

Average 
mode-locking 
time of a 
few seconds, 
subsecond 
recovery time

Figure-of-eight 
laser40

Pump diode 
powers

Pulse 
(autocorrelation) 
duration based on 
nonlinear fibre DFT 
measurements

Feed-forward neural 
network, XGBoost, 
linear regression

Replace time 
domain comb, 
radio-frequency 
spectrum and DFT 
measurements 
by a single 
measurement tool

Real-time 
multiparameter 
monitoring 
with a single 
oscilloscope

Requires a 
large number 
of measured 
parameters

Not available

Mode-locked 
fibre laser30

Waveplates, 
polarizer

Pulse energy divided 
by spectral kurtosis 
of the waveform

Recurrent neural 
network, variational 
autoencoder with 
latent variable mapping 
(feed-forward neural 
network)

Stable mode 
locking

Fast recovery 
from changes 
in the fibre 
birefringence

Complex and 
rather slow 
training process

Numerical 
results

NPE fibre laser35 Liquid-crystal- 
based electrical 
polarization 
controller

Radio-frequency 
power at expected 
repetition rate, 
spectral similarity 
and output power

Genetic algorithm Stable mode 
locking

Output spectra 
can be tuned

Only 
fundamental 
mode locking

Initial 
mode-locking 
time of 90 s, 30 
s recovery time

Ring fibre laser34 Electronic 
polarization 
controller, pump 
power

Centre wavelength 
and repetition rate

Genetic algorithm Stable and tunable 
Q-switching

Tunable centre 
wavelength and 
repetition rate

Limited tuning 
range of around 
20 nm

Not available

NPE fibre laser32 Polarization 
controller

Modified amplitude 
of the nth harmonic 
in radio-frequency 
spectrum

Evolutionary algorithm Harmonic 
mode-locking 
regime with 
anomalous 
dispersion

Optimized for 
high-harmonic 
mode locking

Slow 
convergence

Harmonic 
mode-locking 
time of 2 h

Figure-of-eight 
laser33

Electronic 
polarization 
controller, pump 
power

Peak power, 
maximized 
radio-frequency 
signal at 
fundamental 
frequency, and 
spectral bandwidth

Genetic algorithm Anomalous 
dispersion with 
NALM for stable 
single-pulse mode 
locking

High contrast 
between stable 
and unstable 
pulsing regimes

Complex fitness 
function, slow 
convergence

~30 min

NPE fibre laser31 Electrical 
polarization 
controller

Second-harmonic 
power for anomalous 
dispersion operation, 
intensity of FSR 
radio-frequency 
component for 
normal dispersion

Evolutionary algorithm Q-switched mode 
locking and stable 
mode locking

Two regimes of 
operation

Slow 
convergence

~30 min

Mode-locked 
fibre laser28,29

Polarizer, 
waveplates

Pulse energy divided 
by spectral kurtosis 
of waveform

Toroidal search 
algorithm and 
singular value 
decomposition, sparse 
search algorithm, 
extremum-seeking 
control

Stable mode 
locking

Library of 
identified 
birefringence 
states can be 
used for fast 
identification 
of unknown 
birefringence and 
optimal controller 
parameters

Library of 
all possible 
birefringence 
states must be 
built

Numerical 
results, few to 
tens of minutes 
to build the 
library

NPE fibre laser27 Waveplates, 
polarizers, 
amplifier and gain

Pulse energy of single 
pulse solution

Genetic algorithm High-pulse-energy 
mode locking 
without 
multipulsing 
instabilities

Simple fitness 
function

Requires 
complex 
polarization 
control

Numerical 
results

DFT, dispersive Fourier transform; FSR, free spectral range; NALM, nonlinear amplifying loop mirror.
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some success has been obtained through optimization based on 
measurements of pulse spectra or temporal autocorrelation func-
tions, ideally a feedback signal based on more complete pulse 
measurements would be desirable. However, such complete pulse 
characterization on femtosecond and picosecond timescales gener-
ally requires complex optical systems, and the retrieval of the field 
parameters is an inverse problem which can be particularly time 
consuming to solve48.

Recently, deep neural networks have found applications in solv-
ing such inverse problems in areas such as coherent imaging49,50, 
imaging through scattering media51,52 or super-resolution53, and 
they are now also showing great promise in pulse reconstruction. 
The first attempt to apply a neural network to reconstruct a short 
pulse actually dates back to the mid-1990s and the first develop-
ment of frequency-resolved optical gating (FROG)54, although this 
was limited in making strong assumptions about the functional 
form of the pulse being retrieved. In other work, genetic algorithms 
have also been successfully applied to FROG trace retrieval55,56, but 
pulse retrieval times still took several minutes. More recently, a con-
volutional network trained on simulated data was used to recon-
struct pulses from experimental FROG traces and was shown to be 
superior to conventional methods even in the presence of high noise 
(Fig. 3c)57. Additional studies have employed convolutional net-
works to reconstruct pulses from dispersion scan traces58, or from 
multimode fibre nonlinear speckle measurements59. Phase recovery 
for image reconstruction60–63 and X-ray pulse characterization64,65 
are also among important emerging and growing areas of applica-
tions of machine-learning techniques.

complex dynamics and transient instabilities
In this section, we review the application of machine learning to 
the control and characterization of ultrafast propagation dynamics.

Hidden physics models. The application of machine learning to 
derive predictive models from sparse or noisy measurements has 
now penetrated research into the study of the basic properties of 
physical systems. In particular, a new field of ‘hidden physics mod-
els’ has arisen where closed-form mathematical models or nonlinear 
differential equations governing a physical system66 are identified 
automatically by analysing samples of the dynamical data using 
‘physics-informed neural networks’. In some cases, the form of the 
governing equation(s) may be known or assumed in advance, and 
the goal is to extract only the unknown coefficients67. Alternatively, 
one can combine a neural network with a compressed sensing-like 
method to identify only the active terms of the equation(s) from a 
basis of candidate nonlinear functions68.

Using these approaches, a number of applications in ultrafast 
photonics have been demonstrated to analyse pulse propagation 
dynamics in optical fibre or in fibre lasers associated with the gen-
eration of localized and dissipative soliton structures (Fig. 3d)67. 
Model-free approaches in the form of reservoir computing (unlike 
physics-informed neural networks) have also been implemented 
to predict coherent dynamics in particular cases of soliton-like  

propagation (Fig. 3d)69. At present, however, such work has been 
based on numerical data only — the next step in this field is clearly 
to uncover the governing models from experimental datasets.

Another important area of work involves the study of temporal 
dependencies observed in nonlinear pulse propagation dynamics, 
where the temporal and spectral intensity profiles at a specific time 
instant or propagation length depend on the intensity profiles at 
earlier times or distance. Recurrent neural networks with internal 
memory (which are traditionally used for processing and predic-
tions of time series) are particularly well suited to modelling this 
type of dynamic behaviour. Indeed, very recent results exploiting 
the memory capacity of recurrent neural networks show how a 
recurrent neural network with a long short-term memory cell archi-
tecture can accurately predict the nonlinear propagation dynamics 
of short pulses for a wide range of scenarios from higher-order soli-
ton compression (where comparison was made with experiment) 
to octave-spanning supercontinuum generation70. In addition to 
these studies of single-pass nonlinear propagation dynamics, there 
is clear potential to use recurrent neural networks in predictions of 
the complex multiscale intermittence dynamics also seen in optical 
fibre lasers71.

Chaotic systems and instabilities. Chaotic modulation instability 
in NLSE-like systems is one of the most fundamental examples of 
instability in optics, with analogues in many other physical systems. 
Indeed, the study of how incoherent noise can ‘self-organize’ within 
the NLSE to yield coherent breather structures has attracted wide 
interest, specifically because of possible links with rogue waves and 
extreme events72. However, the complexity of the measurement 
techniques needed to directly capture such chaotic breathers on 
ultrafast timescales has imposed severe constraints on the dynami-
cal regimes that can be explored in experiments73,74.

Machine learning has been used to address this problem directly 
by training a neural network to determine the temporal character-
istics of a chaotic field based on only the spectral intensity char-
acteristics (which are easier to measure). Using numerical data 
generated from NLSE simulations, a neural network was used to 
construct a nonlinear transfer function that maps noisy broadband 
spectra to the local intensity maximum of the chaotic temporal field  
(Fig. 3e). This function was then applied to experimental data 
measured using a high-dynamic-range real-time spectrometer75. A 
similar approach was recently used to determine the peak power, 
duration and temporal delay of extreme rogue solitons in noisy 
supercontinuum generation76. In addition, analysing chaotic data 
from modulation instability, unsupervised clustering analysis using 
the k-mean algorithm was shown to successfully sort intensity spec-
tra into subclasses associated in the time domain with specific solu-
tions of the NLSE related to analytic soliton structures75.

The application of machine-learning techniques has been 
extended to even more complex systems such as those observed in 
transient laser behaviour and extreme events77. Specifically, using 
the knowledge of previous pulses in a chaotic time series from an 
optically injected semiconductor laser, machine-learning methods 

Fig. 3 | Machine-learning applications in ultrafast photonics. a, Pulse compression. Left: optimization procedure. Middle: convergence comparison 
between neural network and evolutionary algorithm. Right: compressed pulse FROG. b, Controlled nonlinear propagation. Left: schematic. Right: 
examples of customized supercontinuum spectra. Pin is the average power of the optimized pulse train leading to maximum spectral intensity at 
selected wavelengths corresponding to the blue shaded regions. c, Pulse reconstruction using a convolution neural network. Left: architecture. Middle: 
reconstructed FROG. Right: reconstructed pulse. d, NLSE solution using a neural network. Left: pulse evolution (top) and comparison of predicted and 
exact solutions (bottom) at three particular points (dashed lines). Right: Kuznetsov–Ma (left) and Akhmediev breather (right) dynamics showing expected 
evolution (top), predicted evolution (middle) and relative difference (bottom). All colour bars are in normalized units. e, Modulation instability. Left: 
simulated spectra (network input; left) and temporal profiles (network output; right). Middle: network schematic for correlation of spectral and temporal 
characteristics. Right: probability density function (PDF) of predicted temporal intensity based on experimental spectra (dashed red line) compared with 
simulated PDF (blue line). Figure adapted with permission from: a, ref. 42, c, ref. 57, OSA; b, ref. 47, d, right, ref. 69, e, ref. 75, under a Creative Commons licence 
(https://creativecommons.org/licenses/by/4.0/); d, left, ref. 67, Elsevier.
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(nearest neighbours, support vector machine, feed-forward neural 
network and reservoir computing) were analysed for their abil-
ity to predict the intensity of upcoming pulses emitted from the 
laser77,78. Although this work was numerical, it clearly shows the 
potential of such prediction for experiment. Attempts have also 
been made to model highly incoherent system evolution, including  

multidimensional spatiotemporal systems79, but the predictions in 
this case tend to diverge over longer distances80.

Multidimensional systems. A major benefit of neural networks 
is their ability to efficiently analyse the properties of multidimen-
sional systems. This can be particularly useful in multimode fibre 
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systems where spatiotemporal coupling dramatically increases the 
parameter space and complexity of nonlinear propagation dynam-
ics. The potential of machine learning in this case was recently dem-
onstrated with experiments tailoring supercontinuum generation in 
a graded-index fibre through control of the injected spatial beam 
profile via a neural-network-driven spatial light modulator81.

Extension to spatial control for enhanced near-field interac-
tions was also shown by combining a neural network with a genetic 
algorithm to optimize spectral-phase shaping of an incident field 
to achieve second harmonic generation hotspot switching in plas-
monic nanoantennas82. In this latter work, the genetic algorithm 
was added to generate a wide range of nanoantenna designs to be 
fed into the neural network.

outlook and challenges
Ultrafast photonic systems are generally very complex, often non-
linear, and with dynamics extremely sensitive to both their internal 
parameters and external perturbations. The design and optimiza-
tion of these systems have been typically based on physical models, 
numerical simulations and trial-and-error approaches. With the 
increased complexity of these systems, driven by the demand for high 
stability, robustness against disturbances, tunability and adaptive 
control, these approaches are now starting to reach their limits such 
that future major advances will require new methodologies that can 
analyse the system characteristics at a global level. One may therefore 
anticipate that machine-learning techniques able to discover hidden 
features and independently adapt as they are exposed to new data are 
likely to play a central role in the next generation of ultrafast systems 
and applications. There are of course many ways machine-learning 
techniques can be exploited, and we discuss below some possible 
future directions of research and challenges to overcome.

Ultrafast fibre lasers are dynamical systems operating in regimes 
determined by dispersion, nonlinearity, gain, losses and satura-
tion effects. Optimization, breakthrough performance, high stabil-
ity against perturbations and automatic tuning requires in-depth 
understanding of the full system parameter space, which can be 
achieved by combining accurate real-time characterization and 
advanced data analysis. Machine-learning-based approaches have 
the potential to reduce the complexity and number of measure-
ment devices typically required. They could further allow for con-
verting results of measurements into a higher-dimensional space 
where the separation of the role played by the different cavity ele-
ments is more apparent, aiding the construction of universal mod-
els. Machine learning may also yield substantial developments in 
full and high-speed characterization of short pulses or complex 
fields arising from highly nonlinear dynamics. Adaptive optics and 
coherent control typically rely on ultrafast laser systems where the 
spatial, temporal and spectral properties of the laser beam are cen-
tral to optimum performance in, for example, metrology83, spec-
troscopy84,85, energy harvesting86 or astronomy87. By enabling more 
systematic strategies rather than heuristic approaches (for example, 
in the optimization of multidimensional systems including beam 
shaping and spacetime focusing in multimode fibres88–90), machine 
learning could enable unprecedented level of control in those appli-
cations. Another important area where we expect machine learn-
ing to lead to substantial progress is the discovery of models using 
data-driven strategies to identify governing mathematical equations 
of complex optical phenomena or photonic systems. It is even con-
ceivable that in the future, ultrafast fibre lasers could become test-
beds for the physics discovered from machine learning.

So far, most machine-learning applications to ultrafast pho-
tonics have been based on genetic algorithms or feed-forward 
architectures. While these implementations have undoubtedly 
led to remarkable and pioneering results, there are still important 
approaches that have yet to be fully exploited. Indeed, it is likely 
that realizing the full potential of machine learning will necessitate  

the combination of several strategies that have so far been used 
only separately. For example, recurrent networks based on long 
short-term memory cells, gated recurrent units or reservoir com-
puting that possess internal memory can be used to model dynami-
cal systems consisting of time series of different states. These 
approaches could enable substantial progress in understanding and 
optimizing nonlinear systems, allowing identification of long-term 
dependencies and internal dynamics in ultrafast lasers, or the pre-
diction of complex evolution maps associated with the propagation 
of short pulses in nonlinear media and related instabilities. Also, 
the capabilities of unsupervised learning to draw inferences and 
reveal hidden internal structures from datasets without labelled 
responses could be of significant interest in problems where dimen-
sionality reduction is key. These include, for example, multimodal 
systems or noise-sensitive dynamics where specific regimes can be 
divided into a number of different clusters associated with measur-
able parameter(s). Moreover, approaches employed for the design 
of nanophotonic components in the form of machine learning 
combined with the adjoint method91 could be a powerful tool for 
the inverse design of ultrafast photonics systems. The concept of 
generative adversarial networks92 where two distinct networks are 
optimized in the backpropagation operation93 is another promising 
avenue to explore in ultrafast photonics.

There are of course important challenges ahead. When using a 
recurrent network to analyse and predict dynamics, proper sam-
pling along the evolution dimension (time or distance) is essential to 
extract and reproduce the long-term evolution structure. Memory 
limitations can then become an issue, especially in the context of 
lasers where it takes usually many cavity round trips for a regime 
to stabilize. Unsupervised learning analysis divides the data into 
subsets with similarities, but crucial information on the criterion 
used to perform the division, or on what the similarities actually 
are within the clusters is lacking. This means that to fully exploit 
the power of unsupervised learning, further human investigation 
is generally needed to establish the link between the clusters and 
specific parameters of the system analysed. This can be a limiting 
factor, especially for the case of noise-sensitive systems where tiny 
variations can result in dramatically different evolution patterns.

The use of machine-learning algorithms for real-time processing 
of photonic systems that can produce data in excess of billions of 
bits per second requires the ability to manage high data volumes, as 
well as a hardware framework capable of dealing with ultrafast pro-
cessing rates. To reduce the large volume of data, one could use the 
approach of spike-based neural networks that can reconstruct fea-
tures of spatiotemporal states based on analysing only a subset of the 
measured data. Inspired by the human brain, which strongly com-
presses the information received from the eye94, spike-based neural 
networks use a specific set of rules such as spike time-dependent 
plasticity leading to self-organization of the network’s topology 
and allowing identification of possible correlations in the input 
data. When combined with lateral inhibition (a spike-based form 
of a winner-take-all topology), spiked-based neural networks can 
self-configure to perform a cluster analysis with performance simi-
lar to that achieved with a k-mean algorithm95. Efforts to develop a 
hardware framework allowing for high-speed processing and opti-
mization on short timescales have already been made, and several 
all-optical network architectures have been proposed based on, for 
example, multiple layers of diffractive surfaces where each point on 
a given layer acts as a node96, or optical matrix multiplication using 
a cascaded array of Mach–Zehnder interferometers integrated into 
a silicon photonic circuit97. Another promising approach could be 
to combine all-optical field-programmable gate arrays and fully 
parallel photonic neural network hardware. Of course, one impor-
tant constraint to the development of all-optical neural networks 
that needs to be carefully studied is the tolerance to photonic com-
ponent fabrication imperfections98.
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In the past few years, there have been remarkable developments 
enabled by the use of machine-learning techniques, and an active 
field of machine-learning ultrafast photonics has now been estab-
lished. As research continues to progress both in the development of 
machine-learning algorithms and ultrafast photonics technologies, 
we can expect even more fruitful interactions with increased influ-
ence of the former in the physical understanding, design, optimiza-
tion and operation of the latter.
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