
Photonics has deep utility in many scientific and 
technological domains. Integrated photonic systems 
enable novel light sources1,2, classical communica-
tion platforms3,4 and quantum-optical processors5. 
Subwavelength-scale metal and dielectric composites can 
scatter and localize electromagnetic waves in custom-
izable and extreme ways, producing new modalities in 
sensing6 and light–matter interactions7. Metamaterials8 
and metasurfaces9, which are structured to perform 
wavefront-engineering tasks, are transforming the field 
of optical engineering. Much of the versatility of photon-
ics can be attributed to the strong relationship between 
device geometry and optical response, which allows 
many optical properties and functions to be tailored 
using structured dielectric and metallic materials.

Photonic systems are typically analysed through the 
framework of one of two problems. The first is the for-
ward problem: given a structure, what is the electromag-
netic response? This is the easier of the two problems and 
can be solved using one of a number of well-established 
numerical electromagnetic simulators10,11. These simu-
lators can accurately evaluate Maxwell’s equations, but it 
is challenging to manage computational resources when 
evaluating large simulation domains and large batches of 
simulations. The second is the inverse problem: given a 
desired electromagnetic response, how does one design 
a suitable photonic structure? The solution to the inverse 
problem cannot be directly evaluated and is challeng-
ing to solve because the solution space is non-convex, 

meaning there exist many local optima. Approaches 
to this problem are often framed as an exercise in 
optimization12 and include simulated annealing13,14, 
evolutionary15,16, objective-first17 and adjoint-variables 
algorithms18,19. Although great strides have been made 
in solving the inverse problem, identifying the best 
overall device given a desired objective and constraints 
remains challenging.

Deep neural networks are a versatile class of machine- 
learning algorithms that utilize the serial stacking of  
nonlinear processing layers to enable the capture and 
modelling of highly nonlinear data relationships. They 
offer a fresh perspective on the forward and inverse prob-
lems, owing to the ability of neural networks to mimic 
nonlinear physics-based relationships, such as those 
between photonic-system geometries and their electro
magnetic responses. The application of deep neural  
networks for deep learning is a fashionable area of  
research, which makes it difficult to separate the hype 
from the true utility. In spite of the hype, deep learning has  
the potential to strongly impact the simulation and design  
process of photonic technologies for a number of reasons.

First, deep learning is a proven method for the cap-
ture, interpolation and optimization of highly com-
plex phenomena in many fields, ranging from robotic 
controls20 and drug discovery21 to image classification22 
and language translation23. These algorithms will 
only get more powerful, particularly given the recent 
explosive growth of the field of data science.
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Second, deep learning is broadly accessible. Software, 
ranging from TensorFlow24 to PyTorch25, is open source 
and free to use, meaning that anyone can start imple-
menting and training neural networks. Furthermore, 
researchers in the machine-learning community prac-
tice a culture of openness and sharing, making many 
state-of-the-art algorithms openly available and easy 
to access. There are also many educational resources, 
including curricula at universities and online courses, 
to help researchers get up to speed with the theory and 
implementation of neural networks.

Third, photonic structures can be readily evaluated 
with a broad range of electromagnetic-simulation tools. 
These widely available tools enable the quantification of  
the near-field and far-field electromagnetic response 
of a structure, which facilitates the solution of inverse 
problems. In addition, they can be used to calculate 
analytic and numerical gradients, such as the impact of 
dielectric perturbations on a desired figure of merit. As 
we will discuss, the computation of such gradient terms 
can be combined with deep learning to yield entirely 
new and effective modalities of inverse design, such 
as global topology optimization. The implementation 
of electromagnetic-simulation-software tools in con-
junction with deep-learning-programming packages 
is streamlined using application programming inter-
faces that come with much mainstream computational 
software26–28.

Fourth, there are broadly accessible computational 
resources that enable large numbers of electromag-
netic simulations to be performed, which plays into 
the strengths of deep-learning approaches. Distributed 
computing, including cloud-based platforms, allows 
anyone with an internet connection to parallelize 
many simulations29. Additionally, the advent of new 
computing-hardware platforms, such as those based on 
graphical30 and tensor31 processing units, will increase 
the computational efficiency and capacity for both 
electromagnetic simulations and neural-network training.

In this Review, we first provide an overview of dis-
criminative and generative neural networks, of how arti-
ficial neural networks are formulated and how different 
electromagnetic phenomena can be modelled through 
the processing of different data-structure types. Second, 
we discuss how deep discriminative networks can serve 
as surrogate models for electromagnetic solvers and 
expedite the solving of forward and inverse problems. 
Third, we show how generative networks are a natural 
framework for population-based inverse design and 
can be configured to perform the global optimization 
of nanophotonic devices. Finally, we compare and con-
trast deep-learning methods with classical modelling 
tools for electromagnetic problems, discuss pathways 
for future research and suggest research practices that 
can accelerate progress in this field. Several recent 
reviews on machine learning and photonics32–34 cover 
topics complementary to those discussed here, including  
reinforcement learning33,35–37 and the application of photo
nics hardware to machine-learning computation32,38. 
This Review provides both a tutorial introduction to 
basic machine-learning concepts and a comprehensive 
guide to current research developments. By covering 

electromagnetic technologies spanning microwave  
to optical frequencies, it offers a broad conceptual  
overview of the topic.

Principles of deep neural networks
Deep neural networks consist of multiple layers of neu-
rons connected in series. A neuron is a mathematical 
function that takes one or more values as its input, per-
forms a nonlinear operation on a weighted sum of those 
input values and yields a single output value (Box 1). 
With layer-by-layer processing of data inputted to the 
network, data features with higher levels of abstraction 
are captured from lower-level features, and complex 
network input–output relations can be fitted. To train 
a neural network, a large training data set is first gen-
erated using electromagnetic simulations. The training 
data aid in the iterative adjustment of the neuron weights 
until the network correctly captures the data distribu-
tions in the training set. Modifications to the network 
weights are performed using a process called backprop-
agation that minimizes the network loss function, which 
specifies the deviation of the network output from the 
ground-truth training set. These terms and concepts are 
discussed in more detail in Box 2.

Photonic devices modelled by neural networks are 
described by two types of labels (Fig. 1a). The first type 
comprises the physical variables describing the device, 
and it includes the device geometry, material and elec-
tromagnetic excitation source. These labels are delin-
eated by the variable x. The second type describes the 
physical responses corresponding to a range of spectral 
and performance characteristics. These labels are delin-
eated by the variable y. In electromagnetics, physical 
responses can be described as a single-valued function 
of physical variables, so that a given input x maps to 
a single y. For example, a thin-film stack with a fixed 
geometric and material configuration produces a sin-
gle transmission spectrum. However, the opposite is 
not true: for most problems in electromagnetics, a given 
physical response y maps to multiple xs. For example, 
the same transmission spectrum can be produced using 
different thin-film stack configurations. As a result, dif-
ferent classes of neural networks need to be considered, 
depending on the type of device labels processed by the 
network. For electromagnetics, the two most commonly 
used network classes are discriminative and generative 
networks.

Discriminative and generative networks
Discriminative networks are capable of regression and 
classification tasks, and can specify complex, nonlinear 
mapping relations between inputs and outputs39. For 
regression tasks, discriminative networks can interpolate 
relationships within training data, and the relation
ship between input and output mappings is that of a 
single-valued function that can support one-to-one or 
many-to-one mappings. As such, discriminative neural 
networks can capture the relationship y = f(x) and serve as 
surrogate physical models that solve the forward problem 
(Fig. 1b). Compared with a numerical electromagnetic 
solver, a trained discriminative network can evaluate the 
forward problem orders of magnitude faster40.
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Deep generative neural networks appear deceptively 
similar to discriminative neural networks, utilizing 
the same concepts in deep-network architecture and 
neuron-based data processing. The key difference is 
that one of the inputs to the network is a latent variable, 
z, which is a random variable internal to the network. 
The term ‘latent’ refers to the fact that this variable 
does not have an explicit physical meaning. In gener-
ative neural networks, the latent variables are sampled 
from a standard probability distribution, such as a 
uniform or Gaussian distribution. A single instance of 
latent-variable sampling maps to a single network out-
put, whereas a continuum of latent-variable samplings 
maps to a distribution of network outputs. The neural 
network can, therefore, be regarded as a function that 
maps a standard probability distribution to a complex 
output distribution.

In photonics, generative networks are typically con-
figured to output a distribution of device layouts (Fig. 1c). 
The network is conditional, and its inputs include the 
latent variable, z, and a set of labels, θ, which is a sub-
set of all device labels and can include physical varia-
bles and physical responses. These networks are termed 
‘conditional’ because the outputted distributions can 
be considered as probability distributions conditioned 
on θ. The network learns from a training set consist-
ing of an ensemble of discrete-labelled devices, which 

can be treated as samples from the distribution P̂(x|θ). 
A properly trained network outputs a device distribu-
tion P(x|θ) that matches the training-set distribution. 
Unconditional networks, for which the only input is the 
latent variable, can also be trained, and these networks 
generate devices that match an unlabelled training-set 
distribution. Schemes for performing inverse design 
with generative networks without the use of training 
sets also exist41,42, and are discussed later in this Review.

The stochastic nature of generative neural networks 
distinguishes them from discriminative networks. 
Whereas discriminative networks can capture the rela-
tionship between device layouts and optical response 
from a training set, generative networks focus on learn-
ing the properties of the device-layout distributions 
themselves43–48. Moreover, for a given input value of θ, 
generative networks produce a distribution of outputs 
and, therefore, perform one-to-many mappings. We note 
that there are also classes of generative networks that do 
not utilize latent random variable inputs49, but these have 
limited capabilities and are not widely used to model 
photonic systems.

In both discriminative and generative models, the 
physical variable inputs and physical response outputs 
must be formulated as discretized data structures. Such 
a representation is in contrast to the continuous form of 
many real-world input–output types, such as freeform 

Box 1 | Building blocks of artificial neural networks

the fundamental unit in an artificial neural network is the neuron, which 
receives an input vector x and outputs a scalar value y, as illustrated in the 
figure. the neuron performs two mathematical operations, a weighted  
sum followed by a nonlinear mapping183. the weighted sum a is calculated 
as = ∑ + = +w xa wx b bi i i

t , where w is a trainable weight vector that 
possesses the same dimension as the input x and b is a trainable bias term. 
the nonlinear mapping applied to a is performed using a continuous, 
differentiable, nonlinear function f, known as the activation function, 
such that the output of the neuron is y = f(a). some of the most widely  
used activation functions are the sigmoid function, the rectified linear  
unit function and the hyperbolic tangent function.

Neurons can be connected in different ways to form different modules 
within a deep neural network. the most commonly used modules in 
electromagnetics are the fully connected (FC) and convolutional layers. 
FC layers comprise a vector of neurons, and the inputs to each neuron in 
one layer are the output values from every neuron in the prior layer. the 
number of neurons in each layer can be arbitrary and differ between layers.

upon stacking a large number of FC layers in sequence, the relationship 
between the input and output data can be specified to be increasingly 

more complex. the nonlinear activation function f applied within each 
layer ensures that such stacking of FC layers leads to added computational 
complexity that cannot be captured by just a single layer.

Convolutional layers are designed to capture local spatial features within 
data. Convolutional layers are typically used to process image-based data 
structures, though they can be generally applied to vector, matrix and 
tensor data structures. For a convolutional layer processing a 2D image, 
a kernel filter is spatially displaced over the width and height of the input 
image with a constant displacement step. the kernel filter is a small matrix 
with trainable weights, and it processes small groups of neighbouring 
image elements. at each kernel position, a single value in the output  
matrix is computed using the same operations as in a single neuron:  
a dot product between the image elements and kernel filter, followed 
by a nonlinear activation. As each value in the output matrix derives from  
a small region of the input image, the output matrix is typically referred to 
as a feature map that highlights regions of the input image with kernel-like 
local features. For most convolutional layers, an input matrix is processed 
with multiple kernels, each producing a unique feature map. these maps 
are then stacked together to produce an output tensor.

Fully connected layers Convolutional layers

ith layer
ith layer

(i + 1)th
layer

(i + 1)th
layer

Input matrix
Output matrix

Kernel filter
Single neuron

Output to
next layer

Inputs

y

Activation
function

f(a)

x1 w1

w2

w3

x2

x3

a = ∑w
i
x

i

Nature Reviews | Materials

R e v i e w s



device layouts and time-sequential events. Nonetheless, 
these forms can be readily discretized in numerical rep-
resentation without loss of generality, because Maxwell’s 
equations can be accurately discretized.

Data structures
There are distinct data structures in electromagnetics  
that describe a broad range of phenomena. In this  
section, we discuss four types of data structures: vectors 
that describe discrete parameters, images that describe 
freeform devices, graphs that describe interacting struc-
tures and time sequences that describe time-dependent 
phenomena. Network architectures and layer config-
urations are subsequently tailored, depending on the 
data-structure type.

Discrete data structures. For relatively basic photonic- 
structure layouts, geometric and optical properties can 
be described by a vector of discrete parameters. Some 
of these parameters are summarized in Fig. 1a and 
include the height, width and period of a device geome-
try, the permittivity and permeability of a material, and  
the wavelength and angle of an electromagnetic-excitation 
source. Many optical properties can also be described as 
discrete parameters and include device efficiency, qual-
ity factor, bandgap and spectral response sampled at 
discrete points. Discrete data structures naturally inter-
face with neural network layers that are fully connected 
(Box 1). If the objective of the network is to relate discrete 
input and output data structures, a deep fully connected 
network architecture often suffices.

Image data structures. Many photonic devices have 
freeform geometries that cannot be parameterized by a 
few discrete variables but are best described as 2D or 
3D images. An example is a freeform metagrating that 
diffracts incident light to specific orders (Fig. 2a) and is 
described as a pixelated image with thousands of voxels. 
Image data types are effectively processed using a set of 
convolutional layers in series (Box 1) that can extract and 
process spatial features50–53. Neural networks that pro-
cess image data structures using convolutional layers 
are termed convolutional neural networks (CNNs). If 
the objective of the network is to output an image data 
structure, such as the internal polarization or field dis-
tributions within a device, a CNN comprising all con-
volutional layers can be implemented54. If the objective  
of the network is to output a discrete data structure, 
such as the spectral response or efficiency of a device, 
high-level feature maps from a series of convolutional 
layers can be joined with fully connected layers for  
processing and conversion to the proper data structure.

Graph data structures. For electromagnetic systems con-
sisting of physically interacting discrete objects, graphs 
are ideal data-structure representations. As an example, 
consider an on-chip photonics system consisting of ring 
resonators coupled in the near field (Fig. 2b). The physical 
attributes of each resonator are embedded in a node of 
the graph, and edges between two nodes in the graph 
describe the near-field interactions between two neigh-
bouring resonators. The graph structure can be irregular, 

Box 2 | training of artificial neural networks

when a neural network is initialized, all neurons have randomly assigned weights. 
to properly specify the weights in a manner that captures a desired input–output 
relationship, the network weights are iteratively adjusted to push the network input–
output relationship towards the values specified in the training set. this training objective 
can be framed as the minimization of a loss function, which quantifies the difference 
between the outputs of the network and the ground-truth values from the training set.

For discriminative networks performing regression, consider terms in the training set 
to be ˆx y( , ) and the outputs of the network, given network inputs of x from the training 
set, to be y. a common loss function for this problem is the mean squared error:
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where N is the batch size. if N is equal to the training set size, the entire training set is 
used in each iteration, and the training process is termed batch gradient descent. if N is 
equal to one, a single training set term is randomly sampled at each iteration, and the 
training process is termed stochastic gradient descent. if N is smaller than the training 
set size but greater than one, a fraction of the training set is randomly sampled at each 
iteration, and the training process is termed mini-batch gradient descent. this training 
process is the one typically used in practice, as it provides a good approximation of the 
gradient calculated using the entire training set while balancing the computational 
cost of network training.

to understand the loss function form in generative networks, the training set and 
generated devices must be treated in the context of probability distributions. the 
training set devices {xi} can be regarded as samples from the desired probability 
distribution spanning the design space, S, denoted as ˆ xP( ). this distribution represents 
the probability that device x is chosen upon a random sampling of a device from the 
design space. similarly, the distribution of devices produced by the generative network 
can be treated as a probability distribution spanning the design space and is denoted 
as P(x). this distribution represents the probability that device x is generated by the 
network upon a sampling of the input latent random variable.

the goal of the training process is to match the distribution of outputted device 
layouts, P(x), with the statistical distribution of structures within the training set, xP( )ˆ . 
to accomplish this objective, the network loss function should quantify the dissimilarity 
between the two distributions. One such function is the Kullback–Leibler (KL) 
divergence184, also known as relative entropy, which is a metric from information theory 
that quantifies how different one probability distribution is from another. it is defined as:
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another related function is the Jensen–shannon (Js) divergence185, which is a 
symmetric function defined as the average KL divergence of ˆ xP( ) and P(x) from their 
mixed distribution x xP P( ( ) ( ))/2ˆ + :
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Both the KL divergence and Js divergence are minimized when P(x) and xP( )ˆ  are the 
same. therefore, specifying either term as the loss function fulfils the network-training 
objective.

For both discriminative and generative networks, backpropagation is used to 
calculate adjustments to the network weights that lead to a reduction in the 
loss function, ∇wL. to visualize backpropagation in a simple example, consider a 
discriminative network comprising a single neuron (Box 1) that is being trained 
using stochastic gradient descent. we start from ∇yL, which is the gradient of the loss 
function with respect to y and ‘propagate’ the gradient back to w using the chain rule. 
to compute 

w
L∂

∂
, we first compute ⋅=∂

∂
∂
∂

∂
∂

L
a

L
y

y

a
, which specifies how a in f(a) should be 

adjusted to reduce the loss function. we then compute =∂
∂

∂
∂

∂
∂

⋅
w w
L L

a
a , which specifies 

how w in a(w) should be adjusted. Note that, for the chain rule to work, all of the 
mathematical functions involved must be differentiable. Backpropagation readily 
generalizes to deep networks comprising many layers of connected neurons, so that 
∇wL can be calculated for every neuron. Once ∇wL is calculated for all neurons, all 
weight vectors are updated by gradient descent: w := w − α∇wL, where α is the learning 
rate. For mini-batch gradient descent, ∇wL is calculated for each sampled training set 
term, and these gradients are summed up at each neuron to produce a single term for 
gradient descent.
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meaning that different nodes can connect with different 
sets of neighbours. For the example shown here, neigh-
bouring nodes connect only when there is a significant 
near-field coupling.

Graph data structures are suitably processed in graph 
neural networks (GNNs)55–57, which analyse and oper-
ate on aggregated information between neighbouring 
nodes in each layer. GNNs can learn the physical inter-
actions between nodes through the training process and 
are able to generalize the nature of these interactions 
to different configurations of neighbouring nodes. As 
more layers in the network are stacked, the interactions 
between nodes that are more distant from each other, 
such as nearest-nearest neighbours, are accounted for 
and learned. The outputs of the GNN are abstracted 
representations of the node and edge properties and 
the graph structure, and they can be further processed 
using fully connected layers to output a desired discrete 

physical response. Although GNNs have not yet been 
extensively studied in the context of photonics, they 
have been applied to a broad range of physical systems, 
including the modelling of phase transitions in glasses58, 
molecular fingerprint analysis59 and molecular drug 
discovery60. The network architectures are highly spe-
cialized depending on the application, and include graph 
attention networks57, graph recurrent networks61 and 
graph generative networks62.

Time-sequence data structures. For dynamical electro-
magnetic systems, the physical variables and responses 
can be described in terms of time sequences. These con-
tinuous electromagnetic phenomena can be represented 
in terms of discrete time sequences without loss of gen-
erality, as long as the discrete time steps are sufficiently 
small. Consider electromagnetic-wave propagation in 
a waveguide modulated by a ring resonator (Fig. 2c). 
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Both the input and output signals are time sequences, 
and the output at a given time not only depends on the 
input signal at that time but also on the state of the device 
(its internal electric fields) at the previous time step.

Recurrent neural networks (RNNs) feed the network 
outputs back into the input layer, maintaining a mem-
ory that accounts for the past state of the system, which 
makes them ideally suited to model time-sequential 
systems63–66. RNNs are more general than CNNs and 
GNNs, and can be adapted to all the network architec-
tures described earlier, allowing them to process discrete, 
image and graph data structures. For the RNN unrolled 
in time in the example in Fig. 2c, we see that, at the tk time 
step, the current signal Iin(tk) and previous electromag-
netic field E(tk − 1) are network inputs, which the RNN 
processes to update its state E(tk) and output the signal 
Iout(tk). Whereas the output of the network varies in time, 
the neural network itself does not change, owing to the 
time-translation invariance of Maxwell’s equations. 
It is noted that RNNs are particularly well suited for 
electromagnetic-wave-phenomena modelling because 
the master equations describing the recurrence relations 
in RNNs have an exact correspondence to the equations 
describing wave propagation in the time domain67.

Forward and inverse discriminative models
Devices modelled by discriminative networks
Initial demonstrations of the neural-network modelling 
of electromagnetic devices date back to the early 1990s 
in the microwave community (Fig. 3a). Microwave cir-
cuits are an analogue to nanophotonic structures, as they 
are based on components described by the subwave-
length limits of Maxwell’s equations. Amongst the first 
published implementations was the use of a Hopfield 
neural network, which is a RNN, for microwave imped-
ance matching68. Through an iterative process, the  
network could specify how changes in stub position and  
length could improve network matching. Network 
weights were determined not through a training process  
but by known relationships between stub position and  
network matching determined from simulations. Although  
this demonstration did not entail a classical trainable 
discriminative network, it showcased the early potential 
of neural networks in electromagnetics problems.

Shortly thereafter, deep fully connected discrim-
inative networks with at least two layers were used to 
model more complex microwave circuit elements, 
including metal–semiconductor field-effect transistors69, 
heterojunction bipolar transistor amplifiers70, coplanar 
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optical response of a structure based on its node and edge attributes. c | Time-sequential phenomena can be captured 
using recurrent neural networks (RNNs). In the wave-filter example shown here, the output of the network, Iout, is a function 
of the input intensity, Iin, and the internal state of the network, which learns E(t). The depiction of the RNN unrolled in time 
shows how the internal state of the network updates after each time step. NN, neural network.
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waveguide components71 and lumped 3D integrated 
components such as capacitors and inductors72. As the 
complexity of the devices increased, accurate modelling 
required a concept termed space mapping, in which a 
deep network that learns spatially coarse device features 
is paired with one that learns spatially fine features72,73. 
Over the last decade, the scope of deep discriminative 
networks for microwave technologies has expanded to 
include frequency-selective surfaces74,75, metamaterials76, 
metasurfaces77 and filters78,79. More details on 
deep-learning developments in the microwave commu-
nity can be found in a number of reviews80–82 and are 

worth noting here because of their potential to translate 
to photonic systems.

Researchers working on silicon photonics and optical 
fibres started exploring the neural-network modelling 
of guided-wave systems in the early 2010s, around the 
time when deep learning as a field started undergoing 
tremendous growth (Fig. 3a). Initial deep discriminative 
networks utilized two to three total neural layers and 
could learn the bandgap properties of simple photonic 
crystals83, the dispersion properties of photonic crys-
tal fibres84 and the propagation characteristics of plas-
monic transmission lines85. More recent demonstrations 
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Fig. 3 | surrogate modelling with discriminative networks. a | Initial 
research on the application of neural networks to electromagnetic devices 
started with microwave systems in the early 1990s and led to the modelling 
of lumped component devices, transmission lines and structured surfaces. 
Neural networks were then applied to model guided-wave photonic 
components and waveguides starting in the early 2010s. Recently, there 
has been immense interest to use neural networks to model various 
nanostructured optical media, from scatterers to metasurfaces. b | The 
scattering spectra of concentric nanoshell scatterers with shell thicknesses 
as inputs can be modelled using a deep, fully connected neural network 
(NN). c | The electric-polarization distribution within nanostructures under 

electromagnetic excitation can be modelled using the convolutional neural 
network shown in the schematic. d | The relationship between coupled 
split-ring resonators constituting a microwave filter and the transmission 
spectrum of the filter can be modelled using a graph neural network. RF, 
radio frequency; s21, the microwave analogue to transmission spectra. 
Panel b is reprinted with permission of AAAS from ref.96. © The Authors, 
some rights reserved; exclusive licensee American Association for 
the Advancement of Science. Distributed under a Creative Commons 
Attribution NonCommercial License 4.0 (CC BY-NC). Panel c is adapted with 
permission from ref.54, ACS. Panel d is adapted with permission from ref.79, 
The Authors.
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focused on devices with additional geometric degrees 
of freedom and included different classes of photonic 
crystal fibres86, 3D photonic crystals87, photonic crystal 
cavities88, plasmonic waveguide filters89, in-plane mode 
couplers and splitters90–92, Bragg gratings93 and free-space 
grating couplers94,95.

Deep-learning modelling of free-space nanopho-
tonic systems has only been researched in the last few 
years (Fig. 3a). The first example is from 2017 and is the 
modelling of the scattering spectral response of concen-
tric metallic and dielectric nanoshells96. Discriminative 
networks have since modelled the spectral responses 
of other plasmonic systems, including chiral 
nanostructures97–99, planar scatters100, absorbers101, lat-
tice structures with tailored coloration profiles102, smart 
windows based on phase-change materials103 and nano-
slit arrays supporting Fano resonances104. Discriminative 
networks have also been used to model photonic mate-
rials in the form of dielectric metagratings105, dielectric 
metasurfaces40,106, graphene-based metamaterials107,108 
and scatterers for colour design109, and they have been 
applied to thin-film dielectric stacks serving as colour 
filters110 and topological insulators111–113.

The collection of surrogate models summarized 
above encompasses a wide range of deep-learning strat-
egies that span differing network architectures, train-
ing strategies and modelling capabilities. To capture 
in more detail how deep discriminative networks are 
implemented in electromagnetic systems, we discuss a 
few representative examples.

Scattering-spectra modelling. A fully connected deep 
neural network was used to reconstruct the scattering 
properties of nanoparticles consisting of eight concen-
tric dielectric shells of alternating silica and titania96 
(Fig. 3b). The input values to the network were the dis-
crete nanoshell thicknesses, and the output was the scat-
tering cross section between 400 and 800 nm, sampled 
over 200 points. The network itself contained four fully 
connected layers with 250 neurons each, and the spectra 
of 50,000 scatterers with random nanoshell thicknesses 
were generated for training using a transfer-matrix for-
malism. Scattering spectra generated by the trained neu-
ral network from a random geometry produced accurate 
profiles that demonstrated the ability of the network to 
perform high-level interpolation of the training data.

Electric-polarization modelling. A CNN was used to pre-
dict the vectorial polarization distribution in a nanopho-
tonic structure, given a fixed electromagnetic excitation54 
(Fig. 3c). The input to the network was a 3D matrix that 
represented a nanophotonic structure discretized into 
small, subwavelength voxels. The output was matrices 
that represented the electric-polarization components 
at each voxel. A fully convolutional CNN was a sensible 
choice for this task because the electric-field distributions 
within a nanostructure are strongly spatially correlated 
with the detailed geometric features of the nanostructure. 
The network architecture utilized an ‘encoder–decoder’ 
scheme consisting of a series of convolutional and decon-
volutional layers, which is a dimensionality-reduction 
scheme that enables high-level features of the input 

matrix to be captured and used for data processing. The 
training data comprised approximately 30,000 random 
structures and their calculated field profiles. The trained 
network could predict the internal fields of a random 
structure with high accuracy, though approximately 5% 
of random-structure inputs produced predicted internal 
fields that strongly deviated from simulated values.

Microwave-filter modelling. A deep GNN was used to 
predict the s21 characteristics, which are the microwave 
analogue of transmission spectra, of a microwave cir-
cuit comprising three to six split-ring resonators79. The 
input to the network was a graphical representation of 
the circuit, in which the graph nodes contained infor-
mation about individual ring-resonator geometries and 
the edges about the relative resonator positions (Fig. 3d). 
Each GNN layer contained two subnetworks, an edge 
processor that captured the near-field coupling between 
neighbouring resonators and a node processor that cap-
tured the electromagnetic properties of individual ring 
resonators based on their geometries and coupling with 
neighbouring resonators. The s21 spectra of 80,000 ran-
domly generated circuits were generated as training data 
using a full-wave commercial simulator. The trained net-
work was capable of accurately computing s21 for many 
resonator configurations four orders of magnitude faster 
than a commercial solver.

These representative examples capture a number 
of general trends common to deep discriminative net-
works. First, trained neural networks serve as reasona-
bly accurate surrogate models for nanophotonic systems 
with limited complexity (that is, described by around ten 
physical parameters). An exception is the CNN map-
ping of nanostructure layout with the internal electric 
field, which is a special case due to the close correla-
tion between nanostructure geometry and polarization 
profile. As the surrogate model represents a simplified 
approximation of the simulation space, there are always 
a fraction of cases for which model accuracy is poor. 
Second, discriminative-neural-network training is com-
putationally expensive. Most of this expense arises from 
the generation of training data, which involves the simu
lation of tens of thousands of device examples or more 
using full-wave electromagnetic solvers. Third, a trained 
network can calculate an output response orders of mag-
nitude faster than a full-wave solver. As such, training a 
discriminative neural network is advantageous only for 
applications in which the benefits of having a high-speed 
surrogate solver outweigh the substantial one-time 
computational cost of network training.

Inverse design
There are three general classes of inverse-design meth-
ods based on trained discriminative networks. The first 
class, outlined in Fig. 4a, comprises gradient-descent 
methods based on backpropagation. Initially, a device 
consisting of a random geometry or educated guess is 
evaluated by the trained network. The error between 
the outputted and desired response is then evaluated  
by the loss function and is iteratively reduced using back-
propagation. Unlike in the network-training process, in 
which backpropagation reduces the loss by adjusting the  
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network weights, the loss here is reduced by fixing  
the network weights and adjusting the input-device 
geometry. We note that many optical-design problems 
do not possess unique solutions: multiple device layouts 
can exhibit the same desired optical response. As such, 
for neural networks that capture this non-uniqueness, 
different initial device layouts located within distinct 
domains of the design space will produce different final 
device layouts after optimization.

The backpropagation method was initially used in the 
1990s for the inverse design of microwave circuits70,114 
and, more recently, to tailor the spectral properties of 
nanoparticle scatterers96, microwave filters79 and pho-
tonic crystals88. As an inverse-design tool, this method 
can produce devices that exhibit the desired optical 

response, as shown in the example of microwave fil-
ters (Fig. 4b, top). However, it does not always work 
well (Fig. 4b, bottom). One reason is that the neural 
network may not be accurately capturing the physical 
relationships between device geometry and response. 
This problem can be addressed by increasing the size 
of the training set. Another reason is that the device can 
get trapped in an undesired local optimum during the 
backpropagation process. This issue can be addressed 
by attempting optimizations with different initial device 
layouts, which leads to the exploration of different parts 
of the surrogate neural network design space. This 
issue can also be mitigated using alternatives to gradi-
ent descent, such as Adam optimization115, which uses 
momentum terms during backpropagation.
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Fig. 4 | inverse design with discriminative networks. a | Backpropagation 
can be used with a trained discriminative neural network to perform 
gradient-based inverse design. An initially random device-geometry input 
gets iteratively perturbed in a manner that pushes its optical response closer 
to that of a desired value. b | Examples of microwave filters designed using 
backpropagation with a trained graph-neural-network model. The resulting 
designs often match the desired spectral response (top) but not always 
(bottom). The corresponding device configurations are drawn on the right. 
c | Classical optimization algorithms can utilize neural networks as high-speed 
surrogate solvers to expedite the optimization process. In this algorithm,  
a surrogate solver is utilized in a genetic algorithm to coarsely search the design 
space, and the backpropagation method is then used to locally optimize the 

device. d | Schematic of the inverse design space of a toy model, where the 
independent variable is the optical response and the dependent variable is 
the device layout. Due to the presence of multiple devices that exhibit the 
same optical response, the design space has multiple branches. Discriminative 
models that attempt to directly capture this design space will not get properly 
trained. e | A multi-branched neural network can be trained to fit a multi- 
branched inverse design space. f | Inverse networks can be implemented by 
first training a forward surrogate model, which learns to model a simplified 
version of the design space, and then to train an inverse network in tandem 
with the forward network. NN, neural network. Panel b is adapted with 
permission from ref.79, The Authors. Panel c is reprinted with permission from 
ref.78, IEEE. Panels d–f are adapted with permission from ref.118, IEEE.
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The second class of inverse methods comprises 
hybrid optimization packages that utilize discriminative 
networks as solvers for conventional, iterative optimi-
zation algorithms. These algorithms span a wide range 
of well-established concepts in the optimization com-
munity and include Newton’s methods93, interior-point 
algorithms105, evolutionary algorithms76,78,90,116, iterative 
multivariable approaches102, trust-region methods103, 
a fast-forward dictionary search40 and particle swarm 
optimization74,77. Compared with optimization using 
conventional full-wave solvers, these hybrid pack-
ages are orders of magnitude faster, reducing the total 
optimization time from hours or days to minutes.

Unlike the backpropagation method discussed above, 
hybrid methods can support customized optimization 
strategies based on the needs of the designer. If a global 
search of the design space is required, global optimizers 
such as genetic algorithms can be used. Local optimi
zers such as Newton’s methods are sufficient if good 
initial device layouts are known and the design space is 
sufficiently smooth. Optimizers can even be configured 
to combine both global and local searching of the design 
space. The flow chart of such a method for the optimiza-
tion of microwave patch antennas and filters is shown in 
Fig. 4c (ref.78): a genetic algorithm coarsely searches for 
good regions of the design space, while gradient-based 
optimization locally refines the devices. The neural net-
work accelerates the full optimization algorithm by serv-
ing both as a surrogate solver and as a gradient-based 
optimizer.

In the third class of methods, an inverse discrimina-
tive network can be configured such that its input is the 
desired optical response and its output the device geom-
etry. While this might appear to be the most straight-
forward way to perform inverse design, it is difficult to 
execute in practice because of the non-uniqueness of 
optical design solutions for many problems. The issue is 
visualized in Fig. 4d for a toy model and shows regions 
of the inverse-design space in which individual inputs 
can take three possible outputs located along three dis-
tinct branches. During the training process, training 
data from a particular branch will attempt to push the 
surrogate model to that branch, and the net result is that 
the surrogate model will not converge to any branch and 
remain improperly trained.

One solution is to limit the design space through 
proper parameterization of the problem, to enforce a 
mostly unique mapping between device geometry and 
optical response. This concept was used to train an 
inverse network for plasmonic metasurfaces consisting 
of coupled metallic discs117. Another solution is to use a 
multi-branched neural network that can be configured 
to output multiple devices for a given input (Fig. 4e). 
In these networks, a special loss function ensures that 
specific network branches produce outputs that map 
onto unique design-space branches118. One other solu-
tion is to train a forward discriminative network serv-
ing as a surrogate model, fix its weights, and then use 
it to train an inverse network110 (Fig. 4f). The forward 
surrogate model represents a simplified version of the 
full design space, reducing the quantity of non-unique 
solutions posed to the inverse network. Such tandem 

networks have been effectively used for the inverse 
design of core–shell particles119, metasurface filters106, 
topological states in photonic crystals111–113, planar plas-
monic scatterers100 and dielectric nanostructure arrays 
supporting high-quality factors120.

Dimensionality reduction
In order to train a discriminative network that ade-
quately captures the correct mapping between the 
whole design and response space, a sufficient number 
of data points in the training set is required to adequately 
sample these spaces. For devices residing in a relatively 
low-dimensional design space, a brute-force sampling 
strategy is computationally costly but tractable: as we 
have seen, tens of thousands of training-set devices 
can be simulated for device geometries described by a 
handful of geometric parameters. However, the prob-
lem becomes increasingly intractable as the dimension-
ality of the design space increases, owing to the curse 
of dimensionality121,122, which states that the number of 
points in the training set required to properly sample 
the design space increases exponentially with the dimen-
sionality of the design space. This scaling behaviour is 
plotted in Fig. 5a together with data points from ten dif-
ferent studies, which follow the exponential trend line. 
For freeform devices described as images with hundreds 
to thousands of voxels, a brute-force sampling strategy 
involving all of these voxels would require many billions 
of training-set devices. Even with distributed-computing 
resources, such an approach is not practical.

Fortunately, for many high-dimensional design 
spaces, candidate devices actually reside in or can 
be well approximated by a subspace described by a 
reduced number of feature parameters. For these prob-
lems, preprocessing these device representations from a 
high-dimensional to a low-dimensional space without 
critical information loss would make the discrimina-
tive modelling of these devices more tractable. In this 
section, we discuss three dimensionality-reduction 
techniques that have been applied to photonic systems.

Principal component analysis. Principal component 
analysis (PCA) is a classical statistical technique in which 
a set of device parameters residing in a high-dimensional 
space is projected to a low-dimensional subspace. The 
first step to performing this projection is identifying 
a new orthogonal basis for the device parameters in 
the high-dimensional space. This basis is determined 
through the sequential specification of basis vectors with 
maximal component scores, which refer to the amount 
of information preserved when the device parameters 
are projected to the corresponding basis vector. The 
subset of these basis vectors with the largest component 
scores is then selected to define the low-dimensional 
subspace. High-dimensional device data structures pro-
jected to such a subspace retain the salient features of the 
original devices with minimal distortion.

PCA was used to expedite the inverse design of verti-
cal fibre grating couplers123 (Fig. 5b). Local optimization 
was first performed on a sparse distribution of devices 
within the full five-dimensional design space. PCA was 
then performed on this collection of locally optimized 
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devices, yielding a 2D subspace that captured locally 
optimal devices. Finally, a brute-force search within this 
low-dimensional subspace was performed with modest 
computational resources to identify even higher effi-
ciency devices. This study did not utilize a deep neu-
ral network but the low-dimensional representation of 
devices based on PCA could be utilized in a discrimina-
tive network to perform device surrogate modelling in 
a particular design subspace.

Fourier transformations. Dimensionality reduction 
can be performed on device structures by eliminating 
high-spatial-frequency terms in image representations 
of the devices48. The concept is outlined in Fig. 5c. First, 
level-set functions of the device images are created, which 
ensures that the initial and dimensionality-reduced 
image-device representations are binary. Next, the 

level-set functions, which represent the shape bound-
aries, are Fourier transformed, and high-frequency 
components in the Fourier space are cropped, reduc-
ing image dimensionality from 64 × 64 to 9 × 9. Due to 
symmetry considerations, nine of the elements in this 
concatenated Fourier representation are unique and 
constitute the low-dimensional device space. To recon-
struct the images in real space, the low-dimensional 
image representations in the Fourier domain are con-
verted using an inverse Fourier transform and thresh-
olding. As a demonstration, this dimensionality-reduced 
subspace was used to encode freeform grating elements 
that could diffract light to different channels. With this 
low-dimensional representation, a deep discriminative 
network that could learn the relationship between the 
grating subspace representation and diffractive response 
could be properly trained using only 12,000 devices.
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e | An autoencoder reduces the dimensionality of the design and optical 
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Panel f is adapted from ref.128, CC BY 4.0.
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Autoencoders. Autoencoders, schematically shown 
in Fig.  5d, are neural networks that comprise two 
parts124,125. The first is an encoder network that maps 
input data from a high-dimensional design space to a 
low-dimensional latent vector. The second is a decoder 
network that takes the latent vector representation 
of the data and maps it back to the high-dimensional 
space, in an attempt to reconstruct the original data. 
Dimensionality reduction is, therefore, achieved through 
the encoding process. The loss function, also termed 
reconstruction loss, attempts to minimize the differ-
ence between the decoded and original data, and often 
has the form of least mean squares error. As such, the 
network attempts to learn the best encoding–decoding 
scheme to achieve a high level of dimensionality reduc-
tion, while maintaining a low level of information loss 
upon decoding. Compared with PCA, which is limited 
to linear transformations, autoencoders can learn more 
complex, low-dimensional representations of the data 
due to the highly nonlinear nature of neural networks.

Autoencoders were utilized to design reconfigurable 
metasurfaces126 based on phase-change materials, which 
can perform amplitude modulation of a normally inci-
dent beam (Fig. 5e). Dimensionality reduction was per-
formed to reduce the design space of device-geometry 
parameters from 10 to 5 dimensions and the response 
space of discretized spectra from 200 to 10 dimensions. 
The resulting subspace supported an approximate 
one-to-one mapping between the reduced design and 
response spaces, from which an inverse discrimina-
tive network was trained with only 4,000 devices. The 
trained inverse network, together with the encoder and 
decoder networks that mapped the data between high 
and low dimensions, could perform inverse design with 
high accuracy.

Autoencoders were also used in an inverse algorithm 
that could predict the layout of a digital metasurface, 
comprising a grid of metal or air pixels, given a desired 
spectral response127. To train this algorithm, an autoen-
coder was first used to perform a dimensionality reduc-
tion on spectra in the training set, from 1,000 to 128 
data points. The resulting latent-space representation of 
the spectra and their corresponding device layouts were 
then used to train multiple support vector machines 
(SVMs), one for each device pixel. SVMs are classical 
machine-learning algorithms that serve as binary clas-
sifiers, and each SVM learned to classify latent-space 
inputs to be either metal or air for the corresponding 
pixel. The final encoder–SVM scheme produced meta-
surface layouts with spectral properties that closely 
matched the desired input spectra.

For autoencoders trained on device geometries, 
additional analysis of the low-dimensional latent-space 
representation of these devices can be performed in an 
attempt to further delineate the full design space of all 
feasible devices. These include fitting physical responses 
of the training-set devices to a convex geometric man-
ifold, termed a convex hull, in the low-dimensional 
space (Fig. 5f), and using a SVM to classify the corre-
sponding devices as either feasible or unfeasible. These 
concepts have been applied to analyse digital plasmonic 
nanostructures and dielectric nanopillar arrays128.

Generative networks
Generative networks for photonic systems
Deep generative networks have been an active topic of 
study in the computer-science community for the last 
decade and have produced impressive, eye-catching 
results. In one famous example, a generative network 
was trained to produce photorealistic images of faces, 
using a training set of millions of face images collected 
from the internet129. This example is representative of 
the conventional way generative networks are utilized  
in the computer-science community: networks are trained  
to generate classes of images that intrinsically exhibit 
a wide range of diversity, such as faces, animals and 
handwritten digits. Training methods exclusively rely 
on learning the statistical structure of the training set, 
as there are no analytic expressions to directly quantify 
the quality of generated images or to calculate gradients 
to directly improve the images. For example, there is no 
equation to score the quality of a face image or gradients 
to make an image more face-like130.

By contrast, in photonics inverse design, the goal is 
qualitatively different: it is to find just one or a hand-
ful of devices that achieve a specific design objective. 
In addition, electromagnetic simulators can assist in 
the network-training process by directly evaluating the  
electromagnetic fields, scattering profiles and perfor-
mance gradients of generated devices. Performance 
gradients refer to structural perturbations that can be 
made to a device to improve its performance, and they 
can be calculated using the adjoint-variables method or 
auto-differentiation. With the adjoint-variables method, 
performance gradients that specify perturbations to 
the dielectric constant value at every device voxel, in 
a manner that improves a figure of merit, are calcu-
lated using forward and adjoint simulations18,19,131–134. 
Auto-differentiation is mathematically equivalent to 
backpropagation135–137 and can directly evaluate per-
formance gradients at every device voxel, pending the 
use of a differentiable electromagnetic simulator. Both 
methods can be performed iteratively to serve as a local 
freeform optimizer based on gradient descent.

These considerations have led to new implemen-
tations of generative networks for photonics inverse 
design; design schemes that utilize training sets for 
network training can be grouped into three strategies. 
The first is to train an unconditional network with a set 
of devices that samples a small, targeted subset of the 
design space (Fig. 6a). These training sets can be ensem-
bles of disparate shapes that collectively exhibit a set of 
desired optical responses, in which case, a trained net-
work would generate distributions of devices that more 
thoroughly fill out this design subspace. These training 
sets can also comprise variants of the same device type 
such that a trained network would generate even more 
geometric variations of that device type, some of which 
would perform better than those in the training set.

The second strategy is to train a conditional network 
with sets of high-performance devices (Fig. 6b). If the 
training set consists of devices operating with specific 
discrete values of the conditional labels, the trained 
network will be able to generalize and produce device 
layouts across the continuous spectrum of label values. 
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This ability to generate devices with conditional label 
values interpolated from those in the training set is 
analogous to regression with discriminative networks.

The third strategy is to initially train either a con-
ditional or unconditional generative network and then 
to use conventional optimization methods to search 
within the latent space for an input value that generates 
a structure with the desired optical properties (Fig. 6c). 
This method is related to that discussed previously in 
which a discriminative model is used as a surrogate elec-
tromagnetic solver in conjunction with conventional 
optimization methods. A principle difference here is 
that generative networks enable more control over the 
search space of candidate devices: the distribution of 
generated devices is constrained by the training set, 
and, furthermore, the generative network uses a proper, 
low-dimensional latent space to represent the training set.

Generative model types
Deep generative networks are a relatively new innova-
tion, and much of the foundation of the field has been set 
in the last decade. Unlike discriminative networks, which 
are described by relatively generic deep-network archi-
tectures, a range of generative models have been devel-
oped that assume different statistical properties about the 
training set and generated data distributions. Amongst 
the first deep generative models developed were autore-
gressive models138,139, which were applied to image gen-
eration in 2011 (ref.140). Images are generated pixel by 
pixel with the assumption that the ith generated pixel  
depends only on the value of all previous pixels49,141. 
These models do not use a latent variable but deter-
mine the value of each generated pixel by sampling an 
explicit conditional probability distribution. By explicit, 
we mean that these statistical distributions are described 
by analytic expressions.

Variational autoencoders (VAEs) were introduced 
in 2013 (ref.142) and are able to learn salient geometric 
features in a training set and statistically reconstruct 
variations of these features through sampling an explicit 
latent-variable distribution. Although these explicit sta-
tistical forms may not perfectly capture variations within 
the training set, they have explicit fitting parameters that 

help simplify the training process. The most advanced 
and best performing generative network to date is the 
generative adversarial network (GAN), which was intro-
duced in 2014 (ref.143) and learns the implicit statistical 
distributions of training sets. By implicit, we mean that 
the distributions have no predefined form. These mod-
els have the potential to better capture highly complex 
statistical trends within training sets but are less straight-
forward to train. GANs have very quickly evolved  
to support a high degree of sophistication, leading to 
demonstrations such as the photorealistic face genera-
tion described earlier. In this section, we discuss in more 
detail the architecture of VAEs and GANs, two of the 
more mainstream models used in photonics.

Variational autoencoders. To understand how a 
VAE works, we first revisit the autoencoder, which 
uses an encoder to map high-dimensional data to 
low-dimensional latent vectors and a decoder to map  
the latent vectors back to the high-dimensional space. The  
latent vectors capture principle features common to  
the training set. Given the objective to generate variants 
of structures similar to the training set, our goal is to 
frame the decoder as a generative neural network: by 
treating the latent vectors as latent variables and sam-
pling within this latent space, the hope is that variations 
of different principle features get sampled and decoded 
into viable structures. Unfortunately, autoencoders do 
not properly interpolate the training set, and random 
sampling of the latent vectors followed by decoding  
produces devices with no relation to the training set.

VAEs are regularized versions of autoencoders that 
overcome these limitations by better managing the 
latent space142,144–146 (Fig. 7a). We summarize two key 
features of VAEs with the caveat that there is a lot of 
probabilistic modelling required to fully understand 
VAEs. First, the encoder maps input data points not to 
discrete points in the latent space but to distributions. 
These latent-space distributions vary as a function of 
the input data and are typically set to be multivariate 
Gaussian distributions, each described by a mean and 
covariance matrix. The encoder, therefore, outputs mean 
and covariance matrix values that are a function of the 
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input data. The decoder now has the form of a generative 
network and uses these latent-space distributions as the 
latent-variable input to generate distributions of data. 
Second, the loss function includes both reconstruction 
loss, which is the same term used for autoencoders, and 
regularization loss, which is the Kullback–Leibler diver-
gence between the multivariate Gaussian distribution 
returned by the encoder and a standard multivariate 
Gaussian distribution. The regularization loss helps 
to ensure that the latent space is not irregular and that 
samplings of the latent variable correspond to principle 
features learned from the training set.

Two strategies for using VAEs in the inverse design 
of freeform, subwavelength-scale meta-atoms are sum-
marized as follows. In the first strategy, the training set 
consists of images of meta-atom patterns and their spec-
tra, which are both encoded into the low-dimensional 
latent space43 (Fig. 7b). For the decoder, the inputs are 
the latent variable and the desired spectra, so that the 

decoder is able to generate a distribution of device pat-
terns given the spectra input. The trained decoder is able 
to decode the desired spectra, together with latent var-
iables sampled from a standard Gaussian distribution, 
into device patterns. In the second strategy, a VAE is 
combined with evolutionary optimization147 (Fig. 7c). The 
training set comprises meta-atom patterns of various 
shapes, such as circles, crosses and polygons, and a VAE 
is trained to map this subset of design patterns to the 
low-dimensional latent space. This latent space is then 
used as the basis for genetic algorithms, where a batch 
of latent vectors is decoded as device patterns, evalu-
ated using electromagnetic simulations or a surrogate 
network, and evolved until an optimized latent vector 
corresponding to a suitable device pattern is identified.

Generative adversarial networks. GANs are a pair of 
neural networks that train together (Fig. 8a): a generative 
network that generates distributions of device images 
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from a latent-variable input and a discriminative net-
work that serves as a classifier and attempts to determine 
if an image is from the training set or generator143,148–150. 
In the original GAN concept143, the training process is 
framed as a two-player game in which the generator 
attempts to fool the discriminator by generating struc-
tures that mimic the training set, while the discriminator 

attempts to catch the generator by better differentiating 
real from fake structures. This training process is cap-
tured in the loss functions specified for each network. 
For the generator, the loss function minimizes Jensen–
Shannon divergence between the training set and gen-
erated device distributions, in an attempt to get these 
device distributions to converge. For the discriminator, 
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the loss function maximizes Jensen–Shannon diver-
gence, in an attempt to differentiate these two distri-
butions as best as possible. Upon the completion of 
training, the fully trained discriminator will be unable 
to differentiate generated images from those in the train-
ing set, indicating that the generator is producing device 
distributions that approximate the training set. With 
this training method, the generator learns the implicit 
form of the training-set distribution without any explicit 
assumptions on its statistical properties. Since the incep-
tion of the GAN concept, alternative loss functions, 
including Wasserstein distance151 and Wasserstein dis-
tance with gradient penalties149, have been implemented 
in so called WGANs. These loss functions help stabilize 
the network-training process and prevent the network 
from generating an overly narrow distribution of output 
values.

In an early example of GANs applied to photonics 
inverse design, a conditional generator was trained that 
could generate images of plasmonic nanostructures 
when the desired transmission spectrum was inputted44 
(Fig. 8b). The training set comprised a variety of free-
form shapes, ranging from discs to crosses, and their 
corresponding transmission spectra. The training pro-
cess involved the use of two discriminative networks to 
improve the generator. The first was the adversarial dis-
criminator, which learned to differentiate generated from 
training-set patterns and ensured that the generated pat-
terns mimicked the training set. The second was a pre-
trained surrogate simulator, which evaluated the spectral 
response of generated nanostructures and ensured that 
the generated patterns exhibited the desired transmis-
sion spectrum. The trained generator produced distri-
butions of shapes that mimicked those in the training 
set and served as an inverse network within this design 
space. A similar type of network scheme that utilized 
two discriminators was used to generate single-layer152 
and multi-layer153 radio-frequency metasurfaces, where 
individual metasurface layers were generally repre-
sented as matrix elements stacked in a tensor. GANs 
were also used to generate plasmonic nanostructures, 
given the desired reflection spectrum as the conditional 
input45, and freeform dielectric meta-atom structures as 

a function of amplitude and phase46. These GANs did 
not use a surrogate simulator during training. Instead, in 
ref.45, terms were added to the generator loss function to 
facilitate the matching of the generated shapes with the 
desired input spectrum, whereas in ref.46, a simulator 
was used to evaluate and filter for high-quality devices 
produced from the trained generator.

GANs have also been implemented using training 
data consisting of topology-optimized nanostructures. 
By restricting the design space of the training data to 
only high-performance freeform devices, the generative 
network exclusively focuses on learning the geometric 
features of freeform structures and does not expend 
resources exploring any other part of the design space. 
In one demonstration, an unconditional GAN was 
applied to plasmonic structures serving as thermal 
emitters for thermophotovoltaic systems154. The training 
set comprised images of different topology-optimized 
structures, each locally optimized from random initial 
dielectric distributions. Upon learning the statistical 
distribution of these training-set devices, the network 
could generate many topologically complex devices 
within this distribution, some of which exhibited bet-
ter performance than the training-set devices (Fig. 8c). 
The same group also analysed thermal emitters using an 
adversarial autoencoder, which is a variation of the VAE 
model, except that an adversarial discriminative network 
is used instead of the Kullback–Leibler divergence to 
match the encoded latent space with a standard Gaussian 
distribution145. For their network-implementation 
schemes, adversarial autoencoders generated better 
devices than GANs155.

GANs have also been configured to learn features 
from topology-optimized metagratings, which are peri-
odic metasurfaces that diffract incident light to the +1 
diffraction order. Metagratings are good model systems 
for metasurfaces because they capture the essential 
light–matter interactions in diffraction processes156–161. 
In the first demonstration, a conventional GAN architec-
ture, conditioned on operating wavelength and deflec-
tion angle, was trained with images of silicon-based 
metagratings operating for select wavelength–deflection 
angle pairs47. The final network could generate topolog-
ically complex devices for a continuous range of wave-
length and deflection angle values, showing the ability 
of the network to learn and interpolate device layouts 
within this parameter space. However, the best gener-
ated devices were not robust or highly efficient, and they 
required additional optimization refinement to match 
the performance of training-set devices. In the follow-
ing demonstration, the GAN training process was mod-
ified to incorporate progressive growth of the network 
architecture and training set over the course of multiple 
training cycles. Self-attention network layers that could 
capture long-range spatial correlations within images 
were also added to the network architecture162 (Fig. 8d). 
When fully trained, this progressive-growing GAN 
could generate robust devices with efficiencies compa-
rable to the best topology-optimized devices, showing 
the potential of generative networks to learn highly com-
plex and intricate geometric trends in freeform photonic 
structures.

Fig. 8 | Generative adversarial networks for freeform device modelling. a | Schematic 
of a generative adversarial network (GAN). The discriminator attempts to differentiate 
whether an inputted device is from the training set or generator, while the generative 
network attempts to fool the discriminator by generating devices mimicking the training 
set. The trained generator generates device distributions that match the training-set 
distribution. b | Images of generated devices and their spectral properties from a GAN 
conditioned on spectral response. The generator trains with two discriminators, one 
that ensures that the generated devices (black) match those in the training set (yellow) 
and one that ensures that the generated devices have spectra matching the desired 
conditional input. c | Device layouts and performance histogram of thermal-emission 
structures generated by an unconditional GAN. d | Progressive-growing GAN (PGGAN) 
that trains using progressive growth of the network architecture and training set over 
multiple cycles. The trained network can generate robust metagratings for a range of 
wavelengths and deflections, with efficiencies comparable to or exceeding those of the 
best devices designed using adjoint-based topology optimization. The black squares on 
the top-right plot indicate wavelength–deflection angle pairs for devices in the original 
training set. EM, electromagnetic; PSO, particle swarm optimization. Panel b is adapted 
with permission from ref.44, ACS. Panel c is adapted with permission from ref.186, 
Applied Computational Electromagnetics Society. Panel d is adapted from ref.162.
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Global topology-optimization networks
A long-standing challenge in inverse photonics design 
is the global optimization of freeform devices. Existing 
methods to perform inverse freeform design, ranging 
from heuristic to gradient-based topology optimization, 
are not able to effectively solve for the global optimum 
because the design space for photonic devices is vast and 
non-convex. In all neural-network-based inverse-design 
methods discussed thus far, which rely on a training set, 
global optimization is only possible if devices near or 
at the global optimum are included in the training set. 
Discriminative and generative neural networks can be 
effective at fitting training data, but they cannot perform 
meaningful extrapolation tasks beyond the training set.

Global topology-optimization networks (GLOnets), 
outlined in Fig. 9a, are a newly developed class of gener-
ative network that are capable of effectively searching the  
design space for the global optimum41,42. Unlike conven
tional implementations of generative networks, which  

are trained to fit a training-set distribution, GLOnets 
attempt to fit a narrowly peaked function centred 
around the global optimum and do so without a train-
ing set (Fig. 9b). In this manner, GLOnets reframe the 
topology-optimization process through the dataless 
training of a neural network.

The basic GLOnet architecture shown in Fig. 9a is a 
deep generative CNN with conditional device labels and 
a latent variable as inputs, and it outputs a distribution 
of devices. During each training step, a batch of devices 
is generated, and the performance metric and perfor-
mance gradient of each device are evaluated using a 
Maxwell solver. The latter can be calculated using either 
the adjoint-variables method or auto-differentiation. 
These performance metric and gradient terms are then 
incorporated into the loss function and backpropagated 
to adjust the network weights. The loss function is engi-
neered to push the distribution of generated devices 
towards the global optimum and is:
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Fig. 9 | Global topology-optimization networks. a | Schematic of a global 
topology-optimization network (GLOnet) optimizer. A generative network 
is trained to output a narrow distribution of devices centred around the 
global optimum. The training process involves evaluating generated 
devices with an electromagnetic solver and using those results in 
backpropagation to improve the mapping of the latent variable to device 
distribution. b | Schematic of the design space, where devices x have 
efficiencies Eff(x). The design space has many local optima and a single 
globally optimal device, x*, which has an efficiency of Eff(x*). Prior to 
training, the generative neural network is randomly initialized with weights 
w and generates a uniform distribution of devices spanning the entire 
design space, Pw(x). Upon training completion, the final network has 
optimal weights w* and produces the narrow distribution xxPww∗( ). 
c | Histogram of silicon metagrating efficiencies for devices designed using 

the adjoint-variables method and GLOnet. The adjoint-variables-optimized 
devices have a broad distribution and the best device operates with 93% 
efficiency. The GLOnet devices have a relatively narrow distribution with 
high efficiencies, and the best device operates with 98% efficiency. d | Plot 
of metagrating deflection efficiency as a function of minimum feature 
size for globally optimized devices comprising four silicon bars, solved 
using a reparameterized GLOnet. e | Plot of emissivity enhancement as 
a function of the number of layers for thin-film stacks serving as an 
incandescent-light-bulb filter. Multi-objective GLOnets outperform the 
genetic-algorithm reference and can produce high-performing devices 
with relatively few layers. Inset: schematic of filters, based on stacks of thin 
films, that transmit visible light (Vis) and reflect infrared (IR) light. Panels a 
and c are adapted from ref.42, CC BY 4.0. Panel d is adapted from ref.187,  
© 2020 The Author(s).
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where N is the batch size, σ a tunable hyperparameter and 
Met(n), x(n) and g(n) the performance metric, device layout 
and performance gradient of the nth device, respectively. 
The biasing of the network towards the global optimum 
is captured by the exponential weighing of the perfor-
mance metric in the loss function. Interestingly, the 
value of the globally optimal performance metric does 
not need to be known.

In an initial demonstration, GLOnets were used 
to globally optimize the efficiencies of metagratings 
consisting of silicon ridges42. Sixty-three uncondi-
tional GLOnets were trained, each searching for opti-
mal devices with distinct combinations of operating 
wavelength and deflection angle, and each network 
was benchmarked with 500 locally optimized devices 
designed using the adjoint-variables method. For 57 of 
these networks, the best GLOnets device had the same 
or higher efficiency compared with the best locally 
optimized device. Histograms of device efficiencies 
from these two methods show that the distributions 
of generated GLOnet devices are relatively narrow and 
biased towards high efficiencies, which is consistent with  
the training goal of GLOnets (Fig. 9c). The stability of the 
GLOnets method was demonstrated with the training 
of eight different randomly initialized networks, each 
with the same design objective: six of the eight trained 
networks produced the same device possessing an 
efficiency of 97%.

Conditional GLOnets for metagratings, which can 
simultaneously optimize devices with a range of wave-
lengths and deflection angles, were also examined41. For 
this demonstration, network training with conditional 
labels worked well because the design space and opti-
mal devices for different conditional labels were strongly 
correlated. A comparison of the best devices generated 
from a single GLOnet and the best devices locally opti-
mized using the adjoint-variables method showed that 
75% of the devices from the conditional GLOnet had 
higher efficiencies than those based on the local opti-
mization. The computational resources required to train 
the GLOnet were 10 times less than those used for the 
local optimization of the benchmark devices. Such com-
putational efficiency arises because the GLOnet does 
not expend computational resources in unpromising 
parts of the design space. Instead, it constantly shifts 
the generated-device distribution towards the globally 
optimal device during training.

Incorporation of constraints with 
reparameterization
An important consideration with all inverse-design 
methods is the incorporation of practical experimen-
tal constraints, such as the specification of a minimum 
feature size or robustness to fabrication imperfections. 
A typical method to incorporate these constraints in 
inverse design is to add terms in the figure of merit that 
penalize violations to these constraints163–165. Although 
this strategy generally pushes devices towards regions of 

the design space that satisfy the desired constraints, it 
does not guarantee the enforcement of constraints. An 
alternative method that can impose hard constraints 
in optimization is to reparameterize the problem, in a 
manner where the optimizer processes devices in a latent 
space that can span an unconstrained range of values166. 
Mathematical transformations are then used to transform 
the latent-space representation to the real-device space, 
and constraints imposed within the real-device space 
are defined by the transformation itself. Finally, the con-
strained device is evaluated in the real-device space. For 
gradient-based optimizers, such as the adjoint-variables 
method or GLOnets, performance gradients are calcu-
lated for devices in the real-device space and are back-
propagated to the latent-device-space representation for 
the optimizer to process. Backpropagation is generally 
possible, as long as the mathematical transformations 
linking the two spaces are differentiable.

Reparameterization was applied to GLOnet algo-
rithms for silicon metagratings deflecting incident 
monochromatic light to a 65° angle. In this example, the 
topology was fixed to contain four silicon nanoridges, 
and the unconstrained latent-space variables mathemat-
ically transformed to ridge-width and ridge-separation 
values with a hard minimum-feature-size con-
straint. The silicon and air regions of the device were  
still defined to possess greyscale values with spatial 
profiles defined by analytic functions, which allowed 
gradients from the adjoint-variables method to be 
directly applied to this shape-optimization problem. 
The resulting globally optimized device efficiencies as 
a function of minimum feature size are summarized in 
Fig. 9d. The unconstrained globally optimal device has a 
minimum feature size of 20 nm, such that reparameter-
ized GLOnets with minimum feature sizes equal to or 
smaller than 20 nm generated the same optimal device. 
As the minimum-feature-size constraint increased, the 
efficiency of the globally optimized devices decreased. 
Images of the device layouts show that the globally opti-
mal devices each possess at least one feature with the 
minimum feature size posed by the constraint, indicating 
the utility of small features to enhance light-diffraction 
efficiency in these devices.

Multi-objective GLOnets
The metagrating topology-optimization problem above 
is single objective: all parameters in the problem are fixed 
except the refractive indices of each voxel, which are spec-
ified to be either silicon or air. Multi-objective problems 
are more complex and require more than just binary deci-
sions to be made, but they can be readily handled with 
the GLOnets formalism without loss of generality. As 
an example, consider the design of multi-layer stacks in 
which each layer can be one of M distinct material types. 
With GLOnets, these multi-layer stacks are represented 
as matrices, where each row is a 1 × M-dimensional vec-
tor, and each term corresponds to a particular material 
type in a given layer. Each of these vectors is computed 
into a probability distribution using the softmax func-
tion, which specifies the likelihood that a particular 
material in a given layer is optimal. The expected refrac-
tive index of each layer given by this likelihood matrix is 
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calculated, evaluated with an electromagnetic solver and 
used to evaluate the loss function and perform backprop-
agation. As the training process progresses, each row of 
the likelihood matrix converges to have one predominant 
term, which is the optimal material.

Multi-objective GLOnets have been applied to a num-
ber of thin-film-stack systems167. One is anti-reflection 
coatings intended for broadband and broad-angle usage 
on silicon solar cells, where a continuum of dielectric 
values was selected for each layer. Existing benchmarks 
for a three-layer system included a brute-force search of 
the global optimum, which took over 19 days of CPU 
computation168, and a multi-start gradient optimizer168, 
which took 15 minutes to find the global optimum. 
GLOnets solved for the global optimum in seven sec-
onds with a single GPU, demonstrating their efficiency 
and efficacy. GLOnets were also applied to thermal filters 
that could transmit visible light and reflect infrared light. 
The results are summarized in Fig. 9e for thin-film stacks 
comprising seven different dielectric material types: mag-
nesium fluoride, silicon dioxide, silicon carbide, silicon 
mononitride, aluminium oxide, hafnium dioxide and 
titanium dioxide. The broadband reflection character-
istics of a 45-layer GLOnet-optimized device showed 
that the device operates with nearly ideal transmission at 
500–700 nm and nearly ideal reflection at near-infrared 
wavelengths, both for normal incidence and for incidence 
angles averaged over all possible solid angles. The applica-
tion of GLOnets to different layer numbers and a compar-
ison with a genetic-algorithm benchmark16 showed that, 
for optimized devices with 45 layers, GLOnets clearly out-
performed the genetic-algorithm reference. Furthermore, 
GLOnets could produce devices with the same perfor-
mance as the genetic-algorithm reference but with 
approximately two-thirds the number of layers, which 
is important for translating these designs to experiment.

Future research directions and practices
Deep neural networks are poised to be a disruptive force 
in the solving of forward and inverse-design problems in  
photonics. In just the last few years, discriminative net-
works have been shown to serve as effective surrogate 
models of Maxwell solvers, learning and generalizing 
the complex relationship between nanoscale layouts and 
their optical properties. Generative models have proven 
to serve as a new framework for the inverse design of 
freeform devices, through the learning of geometric 
features within device data sets and by dataless network 
training using Maxwell solvers.

Neural-network-based models are not a general 
replacement tool for conventional electromagnetic sim-
ulators, which will continue to be a workhorse tool for 
most problems, but they have complementary strengths 
and weaknesses. The main drawback of neural networks 
is that they require large training sets of thousands to 
millions of devices, which is a significant one-time com-
putational cost. If conventional simulation and optimiza-
tion methods can solve a problem with an equivalent or 
smaller computational budget, it is more judicious and 
straightforward to stick with conventional approaches. 
Another issue is that even the best trained networks can-
not guarantee accuracy and should not be used in lieu of 

an electromagnetic simulator when an exact physics cal-
culation is required. It is also noted that low-dimensional 
electromagnetic systems described by a small number 
of design parameters can often be modelled and opti-
mized using a number of classical statistical, machine 
learning and optimization packages169–171, many of which 
are available as standard numerical toolboxes in scien-
tific computing software. Compared with the training 
of deep networks, these methods can work as effectively 
and do not require extensive hyperparameter tuning.

Neural-network-based models also have a num-
ber of strengths that make them uniquely suited for a 
number of problems. First, a trained neural network 
operates with orders-of-magnitude faster speeds than a 
conventional simulator and is ideal in situations where 
simulation time is a critical factor. Second, the regression 
capabilities of neural networks surpass those of classi-
cal data-fitting methods and can extend to complex, 
high-dimensional systems, owing to the scalability of 
neural networks to accommodate thousands of neu-
rons with tunable parameters. Third, neural networks 
are particularly computationally efficient at simulating 
and designing many device variants that utilize related 
underlying physics. These devices range from grating 
couplers that require different input-mode conditions 
to metasurface sections that require different amplitude 
and phase properties, and these device variants can be 
readily co-designed by training a single conditional 
neural network. Fourth, neural-network approaches 
to inverse design can produce electromagnetic devices 
with better overall performance. Global topology opti-
mization based on GLOnets has already been shown to 
supersede conventional gradient-based optimizers, and 
continued advancements in neural-network-based opti-
mization promise even better and more computationally 
efficient design algorithms.

Looking ahead, multiple innovations will be 
required to push the capabilities of deep-learning algo-
rithms towards the inverse design of complex, tech-
nologically relevant devices. First, although generic 
machine-learning algorithms will continue to play a 
role in solving photonics problems, new concepts that 
intimately combine the underlying physical structure of 
Maxwell’s equations with machine learning need to be 
developed. GLOnets, which combine machine learning 
with physics-based solvers, is one such example showing 
how new hybrid algorithms can enhance the capabilities 
of neural networks. There have also been recent demon-
strations that neural networks can be trained to solve 
differential equations172. To integrate physics with neu-
ral networks, we anticipate new innovations in network 
architectures, training procedures and loss-function 
engineering, as well as entirely new ways of using dis-
criminative and generative networks both independently 
and together. We predict that dataless training, in which 
physics-based calculations are used to train neural net-
works, will serve as a particularly effective and computa-
tionally efficient means to harnessing machine learning 
for photonics problems.

Second, new electromagnetic simulators need to be 
developed that can operate at significantly faster times-
cales than conventional full-wave solvers. Fast solvers are 
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needed because, as device complexity increases, signif-
icantly larger training sets for supervised learning and 
larger simulation batches for dataless training methods 
are required. We anticipate that application-specific elec-
tromagnetic solvers will play a major role as ultra-fast 
solvers in deep-learning-photonics problems. One path 
forward is the augmentation of existing Maxwell solv-
ers with neural-network-enhanced preconditioners173. 
With a neural network that can predict an approxi-
mate solution to the electromagnetic problem on hand,  
that solution can be used as a starting point for the solver 
and dramatically speed up the calculation. Specialized 
algorithms that can evaluate the scattering properties of 
structures with high computational efficiency, such as 
integral-equation solvers174 and T-matrix approaches175, 
are also worth revisiting.

Third, the training and refinement of neural net-
works for solving photonics problems need to be better 
streamlined, from both data-usage and user-interface 
points of view. Currently, every time a new problem is 
proposed, a data scientist needs to train and fine-tune a 
neural network from scratch. One avenue that can help 
address data usage is transfer learning, in which a sub-
set of network weights from a trained network solving 
an initial problem is applied to a network intending to 
solve a related problem176. The initial problem can be 
that of a related physical system for which a trained 
network already exists or it can be a simplified version 
of the desired problem, from which an initial neural 
network can be trained with computationally ‘cheap’ 
data. In a recent demonstration, network weights from 
a trained network that could predict the scattering spec-
tra of concentric shell scatterers were transferred to a 
network intended to predict the spectral properties of 
dielectric stacks, leading to improved training accu-
racy of the latter177. For the user-interface problem, we 
anticipate that meta-learning, in which neural networks 
learn to learn178,179, will help automate the set-up and 
training process for photonics-based machine-learning 
algorithms. Meta-learning is currently an active area 
of research in the computer-science community, and, 
although it is a highly data-intensive proposition,  

it promises to simplify the interface between algorithms 
and users.

Also looking ahead, it would be judicious for our com-
munity to take inspiration from the computer-science 
community and engage in a more open culture of shar-
ing. In the computer-science community, extreme pro-
gress and proliferation of data science can be attributed, 
in part, to the willingness of computer scientists to openly 
share algorithms and benchmark their approaches by 
solving common problems. For example, it is typical 
in computer-vision research for groups to use estab-
lished databases of labelled images, such as ImageNet180 
and CIFAR-10 (ref.181), as training data for algorithm 
benchmarking. The computer-vision community even 
engages in regular contests, such as the ImageNet Large 
Scale Visual Recognition Challenge, in which research-
ers attempt to solve the same image-classification task 
with the same training data. This community-centric 
design-of-experiments approach allows researchers to 
rapidly prototype, compare and evolve their algorithms 
at a rapid rate, to the benefit of the whole community.

In this spirit, an online repository for device designs 
and inverse-design codes for nanophotonic systems, 
termed MetaNet, has been developed182. As of this 
paper’s publication, MetaNet contains design files of 
over 100,000 freeform metagrating structures, as well 
as codes for local and global topology optimization. 
We hope that, with continued dialogue within the pho-
tonics community, we can agree on important design 
problems to tackle and to open-source training sets and 
basic code formulations so that we may build on each 
other’s algorithmic approaches. At the very least, with 
inverse-design strategies that produce freeform-device 
layouts, we need standardized methods to share  
device layouts so that we can benchmark and openly 
evaluate the capabilities of these structures, not just in 
terms of device performance but also other metrics, such 
as robustness to geometric imperfections. By working 
together, we can effectively push optical and photonics 
engineering to the next and possibly final frontier.
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