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Tackling Photonic Inverse Design with Machine Learning

Zhaocheng Liu,* Dayu Zhu, Lakshmi Raju, and Wenshan Cai*

Machine learning, as a study of algorithms that automate prediction and
decision-making based on complex data, has become one of the most
effective tools in the study of artificial intelligence. In recent years, scientific
communities have been gradually merging data-driven approaches with
research, enabling dramatic progress in revealing underlying mechanisms,
predicting essential properties, and discovering unconventional phenomena.
It is becoming an indispensable tool in the fields of, for instance, quantum
physics, organic chemistry, and medical imaging. Very recently, machine
learning has been adopted in the research of photonics and optics as an
alternative approach to address the inverse design problem. In this report, the
fast advances of machine-learning-enabled photonic design strategies in the
past few years are summarized. In particular, deep learning methods, a subset
of machine learning algorithms, dealing with intractable high
degrees-of-freedom structure design are focused upon.

1. Overview

Over the past two or three decades, the exploration of artificially
structured photonic media has represented a central theme in
the optical sciences. By carefully engineering photonic structures
to be comparable with or smaller than the wavelength, light be-
haviors, and properties like transmittance, polarization, chirality,
and frequency, can be accurately manipulated in unprecedented
manners. As such, artificial photonic structures are enabling
tremendous applications in modern optical engineering and ad-
vanced science research, such as virtual/augmented reality,[1]

sensing technologies,[2] optical system miniaturization,[3] and
optical communications.[4] Nowadays, research in photonics has
branched out to various fields with substantial influence in the
scientific community. For example, photonic crystals[5] consist
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of repeating regions of distinct refractive
indices, enabling allowed and forbidden
spectral ranges of light and controlling
the propagation of light inside the crys-
tal. Plasmonics[6] studies how light gives
rise to and interacts with collective excita-
tions of free electrons at metal surfaces, ma-
nipulating light waves down to the deep
subwavelength scale. By introducing spa-
tial variations in the optical response of
miniature light scatterers, metasurfaces[7,8]

enable arbitrary wavefront shaping with un-
precedented flexibility by producing con-
trollable abrupt changes in the phase, am-
plitude, and polarization of light waves.
Apart from the enumerated cases, there
are several specific disciplines of photonics,
and the unique characteristics of artificial
structures of photonic devices offer the pos-
sibility for extensive applications.

Analogous to the subject of macroscopic artificial structures,
the design of microscopic structures remains a major topic in
photonic research. Although photonic structure performance is
typically straightforward to predict, through sophisticated sim-
ulation algorithms such as finite element method (FEM) and
finite different time domain (FDTD), the inverse problem, de-
signing an on-demand photonic device, is not closed-form. At
the early stages of nanophotonics research, the prototypical de-
signs were mostly based on educable guesses such as the split-
ring,[9] V-shaped antenna,[8,10] and gammadions[11] to name a
few. However, limited by the prior knowledge of humans and
the complicated light-matter interaction mechanisms, photonic
devices with unconventional functionalities and extremely high
efficiencies may have never been discovered with intuitively
guessed geometries. In order to address the difficulty of pho-
tonic and optical design, inverse design methodologies, such
as adjoint methods[12] and evolutionary algorithms,[13] have be-
come one of the main themes of photonics research in recent
years. These algorithms have successfully been implemented
for the design of various unconventional photonic devices, such
as power splitters,[14] light trapping structures,[15] and dielectric
nanoantennas.[16] In order to further expand the capabilities of
machine-aided design approaches, and to avoid some downsides
of traditional optimization (such as the local minimum problem
and expensive computations), the optical community has started
to look at data-driven and machine learning methods as alterna-
tive approaches to address the inverse design problem.

In the past two decades, the prevalence of information tech-
nology and the advances of hardware have been greatly accelerat-
ing machine learning and data science development. As such,
machine learning has become the central research theme in
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computer vision, natural language processing, speech recogni-
tion, and much more. Besides commercial and engineering ap-
plications, machine learning is assuming an ever-growing im-
portance in scientific research. For example, it is becoming an
indispensable tool for the design of molecule structures,[17–19]

planning of chemical syntheses,[19,20] prediction of material
functionalities,[18,21] classification of celestial bodies,[22] detec-
tion of high energy particles,[23] and investigation of many-body
systems.[24] Recently, the optical community has been progres-
sively migrating the techniques of machine learning and data sci-
ence into photonics research, with a number of successful appli-
cations including ultrafast optics,[25] optical communication,[26]

and optical microscopy.[27] Machine learning has also helped con-
trol the active meta-atoms for microwave applications and realize
self-adaptive invisible metasurface cloak in response to incident
wave.[28] On the other hand, researchers are seeking methods
from photonics to solve machine learning problems. An exciting
interdisciplinary example is the development of optical analog
modules to accelerate the mathematical operations in deep neu-
ral networks by leveraging nanophotonic circuits[29] and diffrac-
tive optics.[30] The fast processing speed enabled by light-matter
interaction at the wavelength scale is pushing photonic chips as a
competitive candidate for the next generation of processing units
serving large-scale deep learning inference.

With the astronomical capability of capturing essential fea-
tures from vast amounts of high-dimensional data, machine
learning models have become a promising tool to aid photonic
design in various ways. In this report, we will introduce the fast
advances in machine learning techniques and their applications
to the design and optimization of photonic structures. Specifi-
cally, we focus on the design approaches relying on deep learn-
ing models that tackle high degree-of-freedom (DOF) designs.
In the following discussion, we will first cover the basics of deep
learning, with a glimpse of the general deep learning methods in
photonic inverse design. Then, several deep-learning-enabled de-
sign methods with their applications in various photonic design
tasks are introduced. In the last section, we will include several
design strategies with a consolidation of both machine learning
algorithms and traditional optimizations. In some cases, such a
hybrid strategy shows a prominently enhanced design capability
over the solely data-driven methods or traditional optimization
algorithms.

2. Brief Introduction to Deep Learning

In this section, we will provide a general introduction to deep
learning fundamentals. We will list a few essential deep learning
architectures and their applications without diving into details,
and then have an overall discussion of discriminative and gener-
ative models. In the last part of this section, we will illustrate the
general methodology of implementation for deep learning mod-
els in the inverse design of photonic devices.

2.1. Categories of Deep Learning Architectures

Modern deep learning architectures are based on neural net-
works, which are inspired by the learning patterns in biological

nervous systems. Generally speaking, a neural network is com-
posed of multiple layers of artificial neurons, each performing a
certain transformation on its input information. With the com-
bined transformations throughout all layers, the neural network
is essentially capable of representing arbitrary real-valued func-
tions. In optical and photonics research, three different archi-
tectures are commonly mentioned: the fully connected network
(FCN), the convolutional neural network (CNN), and the recur-
rent neural network (RNN).

The FCN is the primitive type of neural networks. An FCN
consists of multiple layers of neurons, and each neuron is con-
nected to all the neurons on the adjacent layers. The fully con-
nected properties provide the FCN sufficient capacity to mimic
any complicated transformations. However, the dense connec-
tion also consumes large computing resources. To relax the com-
putational cost without sacrificing the performance of neural
networks, CNN is coined as an improved alternative. Instead of
calculating the weights between all the connected neurons, each
layer of a CNN conducts cross-correlation operations between the
incoming tensor and the convolutional kernel. Such operations
maintain the translate invariance over the input tensor, enhanc-
ing the efficacy of capturing features from image/audio data with
strong spatial/temporal correlations. When it comes to sequen-
tial data, RNNs are the paradigm that is mostly used. RNNs can
be explicitly generalized as sequentially connected neurons. An
RNN is able to process the input data at different timestamps one
at a time and generate a sequence of data based on the input time
series.

2.2. Discriminative and Generative Model

Machine learning models can be roughly categorized into two
classes: discriminative models and generative models. Mathe-
matically, a discriminative model predicts the probability of label
y conditioned on the input data x, i.e., p(y|x), while the generative
learns a probability distribution of x, p(x) or a joint probability of
x and y, p(x, y). Intuitively, a discriminative model is a function
f(x), transforming the input data into a label or value y = f(x).
Thus, discriminative models are always related to classification
and regression tasks in supervised learning schemes. A genera-
tive model, on the other hand, can map the data x into a compact
representation, and with some sample algorithm, we can retrieve
more data that is similar to the input dataset. Generative mod-
els usually serve in the unsupervised learning paradigms, such
as classification without labels. It should be noted that the intro-
duction to generative and discriminative models is not rigorous
or complete, and there are different interpretations of the two
models.

Regarding the implementation of the two models, if we use
deep neural networks, we can say the models are deep dis-
criminative/generative models. In specific, deep discriminative
models are typically a direct implementation of fundamental
network architectures such as an FCN or CNN. With suffi-
cient training data, which could be parameters of the photonic
structures, and labels, which could be spectral responses, we
can have the modern deep learning frameworks take care of
the training of the network. However, the implementation of
generative models is not as straightforward as discriminative
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Figure 1. Methodologies of photonic design through machine learning at different degrees of freedoms (DOFs). a) When the DOF of the photonic
structure is low, the optimal combination of the design parameters can be found by analytical solution or simple parametric sweeping. However, such
a design strategy may not yield optimal performance. b) As the DOF of the design grows, the solution space expands. Without a proper optimization
algorithm, the identification of optimal designs requires exponentially increasing iterations of simulation when the dimensionality of the design space
grows. In the context of machine learning, we may use discriminative model to capture the relations between design parameters and optical responses
with substantially reduced amount of data. It should be noted that, since multiple configurations of structures may correspond to the same response,
a single discriminative model is not able to perfectly map an optical response back to a unique set of design parameters. Additional training strategies
are required if discriminative models are used for the optimization and design. c) When the DOF continues growing to thousands and more, generative
models can help to reduce the dimensionality of the design and to seek relations between design parameters and optical responses for further optimiza-
tion. The generative models can be jointly leveraged with discriminative models as well as traditional optimization algorithms to speed up the design
process or to locate the global optimal solutions.

models, as generative models are built upon several interac-
tive network modules. The essential usage of deep generative
models in photonic research is to either capture the distribu-
tion of datasets to provide insights of design, or to perform di-
mensionality reduction to simplify the optimization. In a lat-
ter section, we will have a very brief introduction of generative
models that have been used in photonics research with concrete
examples.

2.3. Incorporating Machine Learning into the Design of Photonic
Devices

The machine learning methodologies used in photonic inverse
design are associated with the DOF of the photonic structures.
We have listed the general implementation of machine learning
models in various design tasks in terms of the DOF as shown in
Figure 1. Traditionally, with only a few parameters to optimize as

in Figure 1a, analytical calculation and parametric sweeping are
sufficient. With an increased DOF, the optimization space grows
fast and simple parametric sweeping cannot yield a satisfactory
result. In order to accelerate the optimization process and explore
new designs, discriminative models have been proposed to as-
sist the design as shown in Figure 1b. Typically, discriminative
models are used to learn the bidirectional mapping of the optical
structures and their optical responses. However, since multiple
distinct optical structures may correspond to an identical opti-
cal response (which is also called the degeneracy problem), the
mapping from optical responses back to the structural parame-
ters requires additional processing. We will list several proposed
methods that can avoid the degeneracy problem in the next sec-
tion.

When the DOF continues growing to thousands and more, the
immense dimensionality of the optimization space invalidates
the approaches that require huge amounts of data or vast iter-
ations of simulations. Generative models, in this case, can be
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Figure 2. Design of metallic metasurfaces and metamaterials for amplitude and chirality manipulation. a–c) Design of “H” shaped metallic metasurfaces.
a) Schematic of the shape and parameters of the nanostructure. b,c) The simulated, measured, and deep learning retrieved spectra of the design when
the incident light is horizontal and vertical polarized, respectively. The SEM image of the fabricated sample is shown in the inset of b,d–f) Design of chiral
metamaterials. d) Schematic of the designed chiral metamaterial. The inset is the zoomed-in structure of a single meta-atom. e) Desired, predicted, and
simulated circular dichroism (CD) spectra. The insets list the retrieved geometric parameters. f) Predicted full reflection spectra along with the full-wave
simulation results. a–c) Reproduced under the terms of the Creative Commons CC-BY license.[34] d–f) Reproduced with permission.[36] Copyright 2018,
Americal Chemical Society.

leveraged to reduce the dimensionality of the design structures
and optical responses. Two of the most fundamental and widely
used deep generative models are generative adversarial net-
works (GANs)[31] and variational autoencoders (VAEs).[32,33] Al-
though the architectures, performance, and training approaches
of GANs and VAEs differ, both GANs and VAEs are able to
capture the distribution of high-dimensional data and represent
them in a reduced dimensional space, which is also called a
latent space. By sampling the latent space, generative models
can produce more data that are “similar” to the training dataset.
As shown in Figure 1c, a trained generative model is able to
encode the photonic structure data into a compact representa-
tion, and to produce unlimited photonic structures by feeding
reduced dimensional vectors to the model. Optimal design can
be exhaustively searched from the compact representation. Be-
sides, because the generative model is essentially transforming
the original data to another representation, the local minima
in the original parameter space are also varied and possibly elim-
inated in the transformed one. This property may alleviate the
local minimum problem if optimization is performed in the
sparse representation. Another usage of the generative model
is to encode high-dimensional data into a compact representa-
tion, to provide insights on the relations among data to assist
the optimization. As we will see in the later section, genera-
tive models can also be incorporated to the traditional optimiza-
tion algorithms to assist fast design and avoid local minimum
problem.

3. Discriminative Models

In this section, we will introduce several successful implemen-
tations of discriminative models in the design of photonic struc-
tures and devices. The many-to-one mapping from the structural
space to the response space makes the inversion non-unique; the
design cannot be optimally achieved through simply training a
single discriminative model. Hence, auxiliary training strategies
and optimization schema are required to assist the design pro-
cess. Several exemplary strategies that avoid such a degeneracy
problem will be discussed. In addition, we will also present some
outstanding works for accurately predicting optical responses of
photonic structures with a deep learning model. Such a deep-
learning-based method enables fast evaluation of the design per-
formance during the computationally intensive optimization.

3.1. Design of Metallic Metasurfaces and Metamaterials

Malkiel et al. first proposed solving the inverse design of nanos-
tructures in metasurfaces defined by a few parameters through a
bidirectional neural network.[34] The particle with an “H” shape
in the demonstration is illustrated in Figure 2a. Two networks, a
geometry-predicting-network (GPN) and a spectrum-predicting-
network (SPN), are built to collectively solve the design problem.
The GPN predicts the geometric parameters given a spectral re-
sponse, while the SPN approximates the spectrum of the input
geometry of a structure. During the training process, the output
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Figure 3. Design of layered photonic structures. a–c) Design of spherical nanoparticles. a) The schematic of the target core–shell nanoparticle. The
design objective is to maximize the cross-scattering amplitude given a range of wavelengths. b,c) Examples of the on-demand design results, where the
simulated cross-scattering amplitude of the optimized structures are presented, given narrow- and broad-band design requirements, respectively. d–g)
Thin film photonic structure design. d) Schematic of the design configuration, which is composed of 16 layers of SiO2 and Si3N4 thin films. The design
objective is to optimize the thickness of each layer given the desired transmission spectrum. e) Illustration of the design network architecture, which is
a combination of an inverse design network and a forward modeling network. f,g) Examples of the design results, where the target responses and the
responses of the designs are displayed as solid and dashed lines, respectively. a–c) Reproduced with permission.[38]Copyright 2018, The Authors. d–g)
Reproduced with permission. [39] Copyright 2018, American Chemical Society.

of the GPN is fed into the SPN. Given a training pair composed of
geometric parameters and its corresponding spectrum, the aim is
to minimize the loss between the training pair and the outputs of
the GPN and SPN. After the training of the bidirectional network,
new designs with various desired responses can be generated ex-
peditiously by feeding the objectives into the GPN. Figure 2b,c
shows an example of a retrieved structure given two spectral be-
haviors with x- and y- polarized incident light. The SEM of a fab-
ricated nanostructure with a thickness of 40 nm is shown in the
left corner of Figure 2b. The network-predicted, FEM simulated,
and measured results of nanostructure are presented by solid,
dashed, and circled lines, respectively. Similar strategies leverag-
ing two networks, one of which is for approximating optical re-
sponses and the other one for predicting design parameters, have
also been shown to be powerful in other design applications such
as broadband highly reflective metasurfaces.[35]

Another bidirectional strategy was developed and extended to
the design of multilayered chiral metamaterials as illustrated in
Figure 2d.[36] The unit cell of the chiral metamaterials is com-
posed of two stacked gold split ring resonators (SRRs). The chi-
rality of such a metamaterial is characterized by circular dichro-
ism (CD), which is defined as the difference of the absorption
of left and right circularly polarized incident lights. The overall
network architecture for the design is constructed through two
bidirectional networks—a primary network and an auxiliary net-
work. The primary network learns the mapping between the opti-
cal spectra and the design space, while the auxiliary directly tack-
les the relation between the CD and its corresponding structure
parameters. The incorporation of the auxiliary network further
improves the accuracy of the prediction and design. An example
of the retrieval of the structure and its optical responses is shown
in Figure 2e,f. Given a desired CD shown as a red line in Fig-
ure 2e, the network generates a structure with the simulated CD
(dashed lines) matching the desired one. Figure 2f also provides
the simulated spectrum of the designed structure.

3.2. Design of Layered Photonic Structures

Besides the metasurface design, deep learning-based design ap-
proaches have also been applied to the design of layered photonic
structures and particles in the application of photonic crystals,
scattering manipulation, and analog computing.[37] Peurifoy et al.
proposed a strategy for the design of multilayer dielectric spher-
ical nanoparticles.[38] The design particle has a silica core, and
alternating TiO2 and silica shells as shown in Figure 3a. The opti-
mization of design parameters is realized by the backpropagation
algorithm enabled through the automatic differentiation of the
deep learning frameworks. In detail, a forward network is pre-
trained with the simulated dataset, and then the weights of the
network are fixed. The design parameters are optimized through
the iterative backpropagation from the loss function. Figure 3b,c
shows two designs of five-layer particles for the maximum scat-
tering across narrow and broad wavelength ranges, respectively.
The backpropagation is essentially a generic gradient descent al-
gorithm, which can locate a local minimum after certain itera-
tions. With the help of deep learning frameworks, the parallel
and fast evaluation of the gradients promotes the optimization
speed by several orders of magnitudes. This unique feature of
deep learning models makes it an increasingly beneficial design
method when multiple designs with same configurations are re-
quired at once.

Figure 3d–g shows an another example of designing a layered
thin film photonic device with a deep learning algorithm.[39] The
overall device is composed of 16 alternative SiO2 and Si3N4 thin
films, as shown in Figure 3d. The objective of the design is to op-
timize the thickness of each layer to achieve certain target trans-
mission spectra. Same as the inverse design of metasurfaces,
different configurations of the structure may correspond to the
same optical responses. The authors proposed a two-step strat-
egy with a design network and a tandem network as shown in Fig-
ure 3e to resolve this problem. The tandem network is pretrained
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Figure 4. Discriminative models for the design of high DOF photonic devices. a) The design strategy and the network architecture for the 1 × 2 integrated
photonic power splitters with various target splitting ratios. The power splitters are represented by a collection of holes to be etched. The forward deep
neural network approximates the spectral response at the ports, while the inverse network predicts if the holes should be etched given a desired splitting
ratio. b,c) Optimization of 2D photonic crystal nanocavity with CNNs. b) Illustration of the photonic crystal configuration. Circles indicate air holes
formed in Si slab. c) Configuration of the neural network that is able to capture the relationship between the displacements of air holes and the Q-
factors of the photonic crystal. The optimization is performed by treating the hole displacements as variables and iteratively optimize them through
backpropagation. a) Reproduced under the terms of the CC-BY license.[42] b–c) Reproduced with permission.[47] Copyright 2018, The Authors.

to predict the optical responses with an input of design param-
eters. The design network, with the input of optical responses
and output of design parameters, is then trained to reduce the
cost function defined as the error between the predicted response
and the target response. In doing so, the network overcomes the
non-uniqueness in the inverse design without manually remov-
ing the structures with the same responses from the dataset. It
is worth mentioning that this training process is similar to the
previous example of updating design parameters through back-
propagation. However, in this case, the parameters of the design
are generated by a network conditioned on the desired spectral
behavior, other than directly defined as vectors. Figure 3f,g shows
two test examples where the target responses are shown in solid
lines and the transmissions of designed films are show in dashed
ones. Similar applications of such a method are also proposed in
the design of dielectric metasurfaces for color generation [40] and
phase/amplitude manipulation.[41]

3.3. Design of High DOF Photonic Device

With the capability of performing regression and classification
of high-dimensional data points, deep neural networks are also
leveraged for the design of photonic systems with high DOF.
Figure 4a presents a demonstration of a neural network enabled
design of silicon-on-insulator-based 1 × 2 integrated photonic
power splitters with various target splitting ratios. The power

splitters are a collection of holes to be etched represented by pix-
els in binary images as in the left illustration in Figure 4a. Two
networks are also implemented in a bidirectional manner. One
of the network models is designed for the forward simulation,
i.e., predicting the spectral responses at the output ports given a
structure, and the other one is for backward design, i.e., identi-
fying the optimal power splitter with the desired splitting ratio.
Since each hole of the splitter can only be etched or not without
an intermediate state, the inverse design process is modeled as a
classification problem. Skipped connections are incorporated to
the network to solve the vanishing gradient problem while train-
ing the deep neural networks.[42]

With the increasing DOF of the design problems, CNNs with
shared weights performing the cross-correlation operation are
adopted to efficiently process high-dimensional data. A CNN is
able to capture the local correlation of spatial information in
images. As such, a CNN is an ideal candidate to process pho-
tonic patterns represented in images, and spectral responses of
a given photonic device. CNNs have been utilized in various op-
tical problems, such as the inverse scattering problem,[43] wave-
front correction,[44] digital coding metasurfaces,[45] and the pre-
diction of optical properties in complex photonic and materials
systems.[46] Here we will look at a few examples of CNNs imple-
mented in the design of photonic devices.

Asano and Noda reported a work that utilizes a neural net-
work consisting of CNNs to approximate the Q-factor of photonic
crystals and optimize the Q-factor through backpropagation.[47]
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Figure 5. Accurate modeling of multiple optical responses with a single training process. a) Sketch of the neural network model for the modeling of
complex optical near- and far-field effects of nano-optical structure. The photonic structure is represented in 3D grid, and the 3D U-net is trained to
accurately predict the electric polarization density inside of the nanostructure. With the electric information of the structure, all the near- and far-field
responses can be computed through various numerical methods without expensive full wave simulations. b) Example quantities that can be derived
from the output of the network. Reproduced with permission.[54] Copyright 2019, Americal Chemical Society.

Figure 4b presents an example of a heterostructure 2D photonic
crystal nanocavity in the design problem. The aim of the opti-
mization is to identify the positions of these air cavities so as to
maximize the Q-factors given a certain initial structure. The net-
work architecture is shown in Figure 4c, where a fully connected
network is concatenated after a CNN to predict the Q-factor of the
input structure. After the training of the network, the gradient of
the cavities’ positions with respect to the Q-factor can be calcu-
lated through the backpropagation. Optimization is achieved by
iteratively subtracting the gradients from the cavities’ positions.
As a demonstration, the optimization strategy dramatically im-
proves the Q-factor of a photonic crystal from 3.8 × 108 to 1.58
× 109. We want to note that CNNs, relying on their capability of
processing large dimensional data, have become an indispens-
able architecture that deal with photonic devices with the high
DOF.[48,49]

3.4. Efficient Modeling of Photonic System

When leveraging a discriminative model for the design and op-
timization of photonic devices, training a surrogate model that
approximates the physical responses of the devices is always nec-
essary. For example, deep learning techniques have been lever-
aged for the modeling of photonic crystals,[49,50] metasurfaces,[51]

and plasmonics.[52] The accuracy of the surrogate model deter-
mines the fidelity of the design and thus the additional efforts of
post-processing the design. Several strategies can be used for im-
proving the accuracy of the network, and the straightforward way
is to augment the dataset by carrying out more simulations. How-

ever, additional data is not always a valid solution given limited
computing resources and expensive simulations.

To enhance the accuracy of the approximation, various net-
work architectures are explored. For example, residual networks
and recurrent neural network are consolidated to accurately pre-
dict the optical spectra of input nanostructures represented in
images.[50] In addition, we want to highlight the work utilizing
the U-Net[53] to capture a range of complex optical near- and
far-field effects of nano-optical structures with a single training
procedure.[54] Such a strategy is able to improve the prediction
accuracy while extensively reducing the amount of training data
for various design tasks. The architecture and algorithm of the
framework is illustrated in Figure 5a. A nanostructure with an
arbitrary shape is mapped onto the 3D grid, and the neural net-
work model is trained to predict the electric polarization density
inside the nanostructure with training data simulated by cou-
pled dipole approximation (CDA).[55] With the calculated inter-
nal fields, various physical quantities such as polarization state,
scattering cross section, and near-field responses can be retrieved
without expensive computations as illustrated in Figure 5b. The
two-stage method has been applied to the prediction of various
responses of silicon cuboidal and plasmonic nanoantennas. Sta-
tistical results show the average errors of the far-field prediction
are well below 10% and the rate of failed prediction is of the order
of 5%. It is noteworthy that the skipped connections in the U-Net
guarantee the physical information strongly related to the spatial
information can be precisely inferred. Such a unique property of
the two-step approximation enhances the interpretability of the
machine learning model in the application of general physical
problems.
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Figure 6. GAN-based design of metasurface nanostructures. a) Sketch of the configuration of the metasurface unit cell. b) Architecture of the proposed
network for GAN-based photonic design. Three separate networks, a generator, a critic, and a simulator, constitute design network. c) Accuracy of the
test results when different classes of geometry data are used as the training data of the GAN. d,e) Example of inverse design of metasurfaces with
human-defined spectra. d) Desired transmittance spectra as the input to the generator, where Txx and Tyy are two randomly generated Gaussian-like
responses, while Txy and Tyx are 0 throughout the frequency range of interest. e) The resultant unit cell generated by the model to fit the target spectra,
along with the simulated transmittance spectra of this generated metasurface. Reproduced with permission.[56] Copyright 2018, American Chemical
Society.

4. Generative Models and Dimensionality
Reduction

Discriminative models are able to approximate forward simula-
tion with extraordinary accuracy so as to enable various optimiza-
tions of the parameters defining the photonic structures and ma-
terials. However, when the dimension of the design space grows
to thousands and more, it is infeasible to generate sufficient data
for the training of a surrogate model. In addition, optimization
is more likely to converge to local minima due to the degener-
acy problem and the sparsity of the solution. Generative models,
in this situation, are a candidate to reduce the dimensionality of
the design space to assist the fast-global optimization. Here, we
will focus on the deep generative models, including GANs[31] and
VAEs,[32] and their variations in the design of photonic media.

4.1. GANs

As an initial attempt, a network model incorporating a GAN has
been proposed to identify patterns with arbitrary topology, given
desired input responses.[56] The network architecture, comprised
of a generator, a discriminator, and a simulator, is illustrated in
Figure 6a. The discriminator receives the patterns from the geo-
metric dataset and the ones produced from the generator, guiding
the generator to produce the patterns are similar to the dataset.
In the meantime, the pretrained simulator enforces the genera-
tor to create the metasurface nanostructures with desired opti-
cal responses. Given certain design objectives and a geometric
dataset that represents the topologies of metasurface nanostruc-
tures, the framework identifies the optimal topology from the
dataset within 10 min on a GPU machine. The test accuracy of the

design with different classes of geometry data are calculated and
presented in Figure 6c, where the geometric accuracy reflects the
possibility that the designed pattern belongs to the same class as
the input dataset and the average/minimum accuracy measures
the similarity of the spectra of input and generated structures.
Figure 6d,e provides an example of designing a metallic metasur-
face in the visible and near infrared regime with a user-defined
spectrum. Figure 6d shows the desired amplitude transmittances
that Txx and Tyy are two random Gaussian-like resonances and
Txy and Tyx are zero. The generated pattern along with its simu-
lated response is shown in the Figure 6e. Although there exists no
exact solution to spectral demand described above, the network
eventually generates patterns whose spectra share common fea-
tures with the input spectra including the resonance frequency,
the spectral bandwidth, and the transmission magnitude.

With the excellent ability of globally exploring of the design
space with reduced dimensionality, GANs have also been applied
to the design of various types of photonic devices for different ap-
plications. For example, it has been proven that GANs are able to
model the bidirectional mapping of optical structures and their
responses for the efficient design of metallic meta-atoms.[57]

An et al. proposed a GAN-based framework for the automatic
design of multifunctional dielectric metasurfaces, reducing the
tremendous labor of designing large area metasurfaces for the
arbitrary manipulation of phase, amplitude, and polarization of
light.[58] Except for metasurfaces functioning in optical frequen-
cies, advanced GANs are implemented for the discovery of radio
frequency (RF) metasurfaces.[59] The designed RF metasurfaces
have great potential for manipulating reflection/transmission
and beam scanning/focusing in an extremely low-profile. Re-
cently, it has also been reported that GANs can be utilized for
the design of photonic devices in optical communication such as
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Figure 7. VAE-based strategy for the photonic structure design. a) The illustration of the VAE network for the design and characterization of reflective
metamaterials. A set of meta-atoms and their optical responses are encoded into a latent space, from which the latent variables are sampled for the
inverse design in response to certain objective. b–d) Required on-demand reflection spectra input to the model. e–g) Unit cells of the VAE-designed
meta-atoms (black patterns) and the optical responses of their corresponding metamaterials, with the input as shown in (b–d), respectively. Reproduced
with permission.[63] Copyright 2019, Wiley-VCH.

power splitters,[60] integrated photonic devices,[61] and an optical
invisible cloaking.[62]

4.2. VAEs

As another essential member of deep generative models, VAEs
have been implemented to reduce the dimensionality of pho-
tonic nanostructures and their corresponding physical proper-
ties for efficient optical design. Ma et al. utilized VAEs to encode
the meta-atoms of metamaterials and their optical responses, en-
abling the investigation of the complex structure-performance

relationship without extensive data collection.[63] Figure 7 illus-
trates the deep generative model for metamaterial design and
characterization. The metamaterial and its optical responses are
encoded into the same latent space so that similar designs and
optical responses are automatically clustered together. Candidate
designs can be generated by sampling the latent space given re-
quirements in the decoding process. Figure 7b–g presents three
examples of on-demand designs of metamaterials through the
proposed generative model. The desired reflection spectra rang-
ing from 40 THz to 100 THz are displayed in Figure 7b–d, and the
retrieved metamaterial designs together with the simulated spec-
tra are presented in Figure 7e–g, respectively. The spectra of the

Adv. Sci. 2021, 2002923 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2002923 (9 of 15)



www.advancedsciencenews.com www.advancedscience.com

designs exactly replicate the objective. Similar techniques have
also been applied to the design of multi-layered chiral metama-
terials that satisfies various chiroptical response requirements.

4.3. Other Approaches for Dimensionality Reduction

It is noteworthy that the reduction of dimensionality with a con-
tinuity property in the encoded space can also be fulfilled without
GANs and VAEs. For example, an autoencoder (AE) and princi-
pal component analysis have been applied to the analysis of pho-
tonic dataset and revealed the underlying physical connections
between structural parameters and their optical responses.[64] In-
deed, dimensionality reduction can also be carried out through
pure mathematical tools such as Fourier transforms and wavelet
transforms, which have been widely implemented to find a com-
pact sparse representation of the parameter space in time series
analysis and image processing.

Another effective way to represent the topology of a photonic
structure is through a level set. Intuitively, a level set is the inter-
section of a 3D surface and a 2D plane. Thus, a compact repre-
sentation of a 2D structure can be found by looking for the cor-
responding 3D surface. Usually, the level set is widely used in
topology optimization methods.[65] Recent research shows that
level set and Fourier transforms can be combined to encode 2D
photonic structures to a sparse representation.[66] It is also re-
ported that the 3D surface in the level set method can be rep-
resented by multiple control points at different heights.[67] Such
representation can produce an extensive range of nearly arbitrary
2D photonic structure shapes with only a few variables.

5. Optimization with Deep Learning Models

Machine learning as a stand-alone technique is able to analyze
high dimensional complex datasets to capture the essential fea-
tures of the dataset for the approximation of the physical re-
sponses and the design of photonic structures. On the other
hand, traditional optimization algorithms, such as adjoint meth-
ods, genetic algorithms, and particle swarm optimization, also
have significant successes in the optimization of photonic struc-
tures and devices. However, some drawbacks of these traditional
optimization algorithms prevent their use as effective approaches
for the design of high DOF devices in a fast-global manner.
For example, adjoint methods calculate the gradient of the de-
vice parameters with respect to the design objective and update
the parameters by subtracting the gradients. Since the gradients
are computed based on the physical process formulated by the
Maxwell’s equations, the optimization is guaranteed to seek a
local minimum. Yet, as all other gradient-based optimization,
global minimum is unlikely to be achieved if the objective cannot
be formulated as a convex function.[68] Stochastic optimization,
such as random search and evolutionary algorithms are more
likely to identify global minimum, but extensive evaluation of
the performance of these designs is inevitable due to a need to
explore the whole solution space. Thus, stochastic optimization
algorithms are not suitable for designs that require expensive
simulation to validate their performance. In order to augment
the capability of these traditional optimization algorithms, we

may seek help from data-driven methods. There have been re-
ports that coupling statistical learning and evolutionary algo-
rithms can address the global optimization of dielectric photonic
structures.[69] In this section, we will focus on a few examples
that incorporate deep learning models with traditional optimiza-
tion algorithms to alleviate the challenges of designing high DOF
photonic devices.

5.1. Adjoint Methods

One of the approaches to avoid the local minimum in the
gradient-based methods is to utilize deep generative models to
produce vast number of new designs based on sufficiently good
designs, and to optimize the generated designs to yield outper-
formed structures. For example, Jiang et al. proposed a joint
optimization framework with GAN and adjoint methods to op-
timize topology-complex 2D metagratings with high efficiency
over a broad range of deflection angles and wavelengths.[70] As
shown in Figure 8a, a GAN is trained with images of periodic,
topology-optimized metagratings. Since a GAN can capture the
geometric features of the training data and produce more sim-
ilar, but not identical, data, it is likely that the GAN-generated
designs jump out of local minima and present higher efficiency.
Adjoint optimization can be further applied to the designs to op-
timize the devices with enhanced robustness and efficiencies. It-
erative refining of the GAN with these new designs consistently
boosts the fidelity of the design. Figure 8b shows an example of
the metagrating generation and refinement process with a GAN
and topology optimization. The histogram of training data, GAN-
generated metagratings, and random binary patterns are shown
in Figure 8b,c. With additional topology refinement, the device
efficiency and robustness are further improved as shown in
Figure 8d.

Besides GANs, another generative model, adversarial autoen-
coders (AAEs) are also adopted for the design of high-efficiency
thermal emitters.[71] An AAE is a generative architecture that in-
corporates an autoencoder into an adversarial learning frame-
work and can generate more photo-realistic images compared to
vanilla GANs. Refining the AAE-generated patterns with topo-
logical optimization has been proven to yield more robust and
efficient designs as compared to the optimization solely with the
adjoint method. As an example, the reported emitter with an op-
timized topology has a normalized efficiency of 97.9%, approach-
ing the ideal emitter, and far exceeding the simple cylindrical
emitter with an efficiency of 83%.

Global optimization with adjoint methods can also be realized
by coupling the adjoint method with a generative model.[72] Fig-
ure 8e presents a proposed global optimization based on a gen-
erative neural network (GLOnet). The network takes device pa-
rameters, such as wavelength and deflection angles, and a noise
vector as input, and generates binary vectors representing 1D
metagratings. In order to train the network so as to produce opti-
mal devices, efficiency gradients are calculated for each device
using forward and adjoint electromagnetic simulations. These
gradients are backpropagated through the network to update the
weights of the neurons. It is proven that the devices parametrized
by a neural network with randomness at the input can al-
most surely converge to global minima. Figure 8f,g presents the
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Figure 8. Consolidation of adjoint methods and deep learning for the design of metagratings. a–d) Design of freeform metagratings with a GAN. a)
Schematic of the design strategy. Metagratings candidates are generated from a GAN with the desired input of wavelength and deflection angle. The
output metastructures are further refined with topology optimization. b,c) Histograms of performances of generated metagratings compared to the
topology-optimized structures (training dataset) d) Efficiency of the GAN-generated metagrating with additional iterations of topology optimization.
The efficiency and robustness of the generated structures can be consistently improved through additional optimizations. e–g) Conditional GLOnet
for global metagrating design. e) The schematic of the GLOnet, where the weights of the generator network are updated with the gradients calculated
by the adjoint method. f,g) Optimized performance of the designs retrieved from the adjoint optimization and the GLOnet, respectively, given a range
of desired deflection angles and wavelengths. a–d) Reproduced with permission.[70]Copyright 2019, Americal Chemical Society. f–h)Reproduced with
permission.[72] Copyright 2019, American Chemical Society.

performance comparison of adjoint methods and the GLOnet
optimization. The devices designed by GLOnet in general have
higher efficiencies than the devices optimized by adjoint method,
while requiring lower computational cost.

5.2. Black-Box Optimizations

Black-box optimization algorithms, such as simulated anneal-
ing, random search, and evolutionary algorithms, on the other
hand, do not seek the gradients to iteratively update the param-
eters. Instead, they stochastically update the structural parame-
ters either through probabilistic methods or by emulating phys-
ical/biological processes to identify a solution in a global man-
ner. However, without the gradient information from the phys-
ical model of the problem, vast iterations of computation are
required to explore the space in order to yield an optimal so-
lution. The redundant computations limit these black-box opti-
mizations in the design of photonic structures, materials, and
devices requiring computationally intensive simulations. To alle-
viate the repeated computation, Hegde proposed a strategy that
pairs the evolutionary algorithm with a deep neural network.[73]

The network model is trained as a surrogate model to partially
replace the expensive simulation for the preselection and opti-
mization of optical thin-film systems. The massive parallelized
simulation enabled by the surrogate model significantly reduces
the time for evaluating the fitness/cost function during the opti-
mization. Essentially, the network model is equivalent to a cache
that stores the calculated results, but with a dramatically com-
pressed size, for fast evaluation of the physical responses of pho-
tonic devices without repeated computations. The interpolation
property of the machine learning model also expands the capac-
ity of the cache for predicting the responses of inputs that are not

exact to the stored data. Such a surrogate model is also reported
in the design of various photonic structures, such as integrated
photonics.[74]

On the other hand, the efficacy of the black-box optimiza-
tions is also dependent on the dimensionality of the solution
space, i.e., DOF of the photonic systems. Large dimensional-
ity of the optimization space reduces the possibility of iden-
tifying a global solution. To bring down the DOF, generative
models can be incorporated into the optimizations serving as
a method of dimensionality reduction. As we discussed in sec-
tions 4.1 and 4.2, with sufficient empirical photonic data, GANs,
VAEs, and other machine learning algorithms can construct a
compact sparse representation of photonic structures in a latent
space with a reduced dimensionality. Searching the latent space
of the generative models is much more efficient compared to
performing optimization on the original high-dimensional data
space.

Figure 9a presents the flowchart of a strategy that consolidates
generative models and an evolution strategy (ES) for photonic
structure design.[75,76] A pretrained generator, trained either from
a GAN or a VAE, is incorporated to generate photonic structures
from dimensionality-reduced latent vectors. The strategy begins
with generating a population of random latent vectors, and these
vectors are recovered to photonic structures for subsequent sim-
ulation. After evaluating the fitness score, the latent vectors go
through selection, reproduction, and mutation, as the traditional
ES algorithm. This process iterates till an optimal solution is
reached. Figure 9b shows four examples of the designed photonic
structures given objective transmittance Txx, Tyy, Txy, and Tyx at
different incident polarizations.

With more sophisticated evolutionary algorithms and genera-
tive networks, the maximum DOF of the design can be further
enhanced. Figure 9c–g show an example of the consolidation of
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Figure 9. Consolidation of evolutionary algorithms and deep learning for the design of meta-atoms. a) Flowchart of the ES-based optimization with a
generative model in the loop. The generator is responsible to recover the low-dimensional representation of the photonic structures into the photonic
design. b) Samples of on-demand inverse design of metasurfaces. The desired spectra Txx, Tyy, Txy, and Tyx are shown in solid curves, while the simulated
performance of the designs is shown in dashed lines. The generated patterns in the unit cell are depicted in the lower right corner of each plot. c) The
schematic of a compositional pattern-producing network (CPPN). The CPPN as a generator composes the pattern one pixel at a time. d) The flowchart of
the cooperative coevolution (CC) algorithm for the design of multiple meta-atoms in the metasurfaces. e) Designed gradient metasurface for polarization
conversion and beam steering. The metasurface is able to convert portion of left circularly polarized (LCP) incidence into its counterpart (RCP) and deflect
it away. f) Measured polarization states (dashed lines) of the incident and diffracted lights. The dashed-dotted lines represent measured data after a
quarter waveplate. The rotation of measured polarization with the waveplate confirms the light polarization is flipped from LCP to RCP. g) Simulated
electric field distribution of RCP component under the LCP incidence. a,b) Reproduced with permission.[75]Copyright 2020, IEEE. c–g) Reproduced with
permission.[77] Copyright 2019, Wiley-VCH.

cooperative coevolution (CC) and a generative model enabling
the fast design of meta-molecules composed of multiple dis-
tinct meta-atoms.[77] The generator in the example optimization
framework is implemented by compositional pattern-producing
networks (CPPNs).[78] Figure 9c illustrates the architecture of a
CPPN. The input is a combination of a latent vector and the coor-
dinates of an image, and the network composes the topology of
photonic structure with each pixel one at a time. Such a genera-
tion process guarantees that structures with highly complex fea-
tures as in training dataset can be produced. Consolidated with
a cooperative CC[79] framework and an ES algorithm as outlined
in Figure 9d, the hybrid framework assists the design of meta-
surfaces with multiple meta-atoms collaboratively manipulating
a range of far-field properties of light. Figure 9e presents a de-
signed metasurface that is able to convert left circularly polarized
(LCP) incident light to its counterpart right circularly polarized
(RCP) with a phase gradient and deflects the converted portion
away from the incident direction. The measured polarizations
states and full wave simulation of the electric field are shown in
Figure 9f,g.

6. Discussion and Outlook

Over the past few years, machine learning has successfully
demonstrated its potential to yield complex high-performance
photonic designs with little human intervention. However, an ac-
curate model inevitably requires a huge amount of training data,
which may incur a substantial computational burden. The trade-
off between the size of the dataset and the accuracy of the model
is indeed a crucial factor to be considered when machine learn-
ing is utilized for inverse design. There are several approaches
being investigated to mitigate the dependency on data. For ex-
ample, using advanced machine learning techniques in combina-
tion with physical methods can increase the explainability of the
model and thus improve the prediction accuracy with less data.[54]

Meanwhile, deep learning has proved to be able to capture the
fundamental law behind the complex physical phenomena,[80]

and serve as the intermediate steps for solving numerical partial
differential equations.[81] Such strategies provide a fast, general-
ized, and accurate modeling method for potential optimization
and inverse problems with much lower data requirement. On
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the other hand, since collecting data does not conflict with tradi-
tional optimization strategies, data generation and optimization
can be performed in parallel. The collected data can be used to
train a machine learning model for the acceleration of the simu-
lation in the later optimization steps. Lastly, as other data-driven
research, an effective approach to accelerate the development of
machine-learning-assisted photonic design is to collectively con-
struct large datasets of various optical designs with the effort of
the optical community.[82] The established dataset could avoid re-
peated efforts of generating simulation data, shorten the cycle of
implementing new algorithms, and provide a unified standard to
evaluate model performance.

The prosperity of machine learning and artificial intelligence
(AI) is bringing the scientific community onto a new stage. In
this era, the analytical methods, optimization algorithms, and
data-driven approaches are consolidated, forming a toolbox to
uncover the theory behind complex phenomena and design un-
conventional devices that could never be discovered before. In
the realm of optics and photonics, we have witnessed the evo-
lution of research methodologies from analytically solving gov-
erning equations to today’s AI strategies with learning and op-
timization. In our report, we have covered a couple of outstand-
ing works in the emerging stages of the field. Machine learning
algorithms have helped unearth the intrinsic relations between
matter and light behavior, providing insights to enable and as-
sist the design of optical components. Notwithstanding the fact
that these are preliminary research, we can expect, when state-
of-the-art machine learning algorithms are progressively adapted
to the optical community, the complexity of the design to con-
tinue growing, and the performance to further approach the limit
bounded by physics. Nowadays, due to the demanding geomet-
ric and physical restrictions, the design of optical components in
modern applications has heavily relied on computation and opti-
mization algorithms. With the union of AI and machine learning,
we are anticipating machine intelligence, jointly with traditional
methods, to substantially boost the discovery and development
of advanced photonic devices in essential and/or unconventional
applications, including optical communications, high-resolution
displays, virtual/augmented reality, various sensing technolo-
gies, and so much more.
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