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New photonic structures, materials, devices and systems 
have been driving forces for transformative technologies, 
including high-speed optical communication and com-

puting, ultrasensitive biochemical detection, efficient solar energy 
harvesting and super-resolution imaging, as well as quantum infor-
mation processing. Over the past three decades, we have witnessed 
tremendous progress in and success of artificially engineered pho-
tonic structures, including photonic crystals, metamaterials and 
plasmonic nanostructures, with unparalleled capabilities in tailor-
ing light–matter interactions and unlocking new device concepts. 
Many fundamental laws have been revisited or generalized in these 
structured media, and consequently they promise a wide range of 
important applications. For instance, photonic crystals can real-
ize complete photonic bandgaps, so that light can transmit around 
a sharp bend surrounded by such crystals with near-perfect effi-
ciency1. Metamaterials demonstrate exceptional properties through 
rational structural designs, exemplified by negative refractive indi-
ces: these enable light to be refracted to the negative direction, in 
contrast to normal refraction based on Snell’s law2–4. By using metal-
lic nanoparticles with different sizes, geometries and compositions, 
plasmonics can break the classical diffraction limit, offering the 
opportunity to control light emission at the single-molecule level5.

Whether we are discussing individual plasmonic nanostruc-
tures, or metamaterials and photonic crystals composed of arrays 
of dielectric or metallic building blocks, structural designs play a 
central role. So far, there are two main design approaches. First, we 
can resort to physics-based methods, such as simplified analytical 
models, knowledge obtained from prior or related practice, and sci-
entific intuition. For example, dielectric and metallic nanoparticles 
with simple geometries (such as spheres, cylinders and core–shell 
particles) can be accurately modelled by Mie theory6. The scatter-
ing, absorption and extinction responses of the particles arise from 
their electric and magnetic multipolar resonances. The initial idea 
of split-ring resonators, widely used in the metamaterials commu-
nity to produce effective magnetism, was based on electromagnetics 
and electrical circuit theory7. Specifically, varying external magnetic 
fields induce a current loop and thus a magnetic dipole, which is 
greatly enhanced around the resonance frequency determined by 
the internal capacitance and inductance of the resonator. For pho-
tonic crystals, the intuition originated from the successful under-
standing of electron transport in the periodic potential well of a 

solid material8. In an analogue, light transmission through periodi-
cally modulated refractive indices can be greatly modified, enabling 
‘photonic semiconductors’ with complete bandgaps that disallow 
the propagation of light in the ‘forbidden band’. Although these 
physics-based approaches offer important guidelines, it is not trivial 
to find the right structures to realize the desired photonic proper-
ties, especially when the geometry and spatial arrangements of the 
structure become complicated.

Therefore, we have to rely on the second approach: electromag-
netic modelling based on numerical simulation methods such as the 
finite-difference time-domain method, the finite-element method, 
the finite integration technique or the method of moments, with 
or without optimization algorithms. Generally, starting from cer-
tain initial and boundary conditions, these computational electro-
magnetics simulations solve the design problem by discretizing 
Maxwell’s equations spatially and temporally. By setting up suf-
ficient meshes and iteration steps, we can accurately calculate the 
optical properties of a given structure. Nevertheless, we often need 
to fine-tune the geometry and iteratively perform simulations to 
gradually approach the targeted responses. This procedure largely 
relies on past experience of the design templates, and owing to con-
straints on simulation power and time, only limited design param-
eters are adjusted in searching for the optimal structure.

The inverse design problem, meaning the direct retrieval of 
the proper structure for the desired optical performance, requires 
exploration of a much larger degree of freedom in the design 
space, and hence is even more challenging. To search the formi-
dably large design space efficiently, the inverse design procedure is 
usually guided by optimization algorithms: either gradient-based 
approaches (for example, topology optimization, adjoint method 
or level-set method) or evolutionary approaches (such as genetic 
algorithms or particle swarm algorithms). Such inverse design algo-
rithms enable one to find non-intuitive, irregularly shaped pho-
tonic structures that outperform empirically designed structures in 
many applications, such as silicon photonic components, photonic  
crystals and metamaterials. Fundamentally, these algorithms are 
rule-based approaches containing iterative searching steps in a 
case-by-case manner, often relying on numerical simulations in 
each step to produce intermediate results that help to modify the 
searching strategy. Such stochastic algorithms are limited by their 
random-search nature and hence are insufficient for complex design 
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in a multi-constrained problem. Readers interested in inverse design 
in photonics can refer to recent reviews on this topic9–11.

Deep learning allows a computational model composed of mul-
tiple layers of processing units to learn multiple levels of abstrac-
tion in given data12. In light of its exceptional success in domains 
related to computer science and engineering, including computer 
vision13, natural language processing14, speech recognition15, knowl-
edge graphs16 and decision making17, deep learning has attracted 
increasing attention from researchers in other disciplines, including 
materials science18, chemistry19, laser physics20, particle physics21, 
quantum mechanics22, computational imaging23 and microscopy24, 
demonstrating potential to circumvent the drawbacks of tradi-
tional methods and create unprecedented opportunities in these 
areas. The unique advantages of deep learning lie in its data-driven 
methodology, which allows the model to discover useful informa-
tion automatically from a huge amount of data, in sharp contrast 
to physics- or rule-based approaches. Over the past few years, deep 
learning has become a radically new approach in the context of pho-
tonic design.

In this Review, we draw attention to a collection of recent results 
that showcase the power of deep learning in the design of photonic 
structures, materials and devices, where empirical or traditional 
approaches are infeasible or inefficient. We begin by providing 
background on the deep-learning model for photonics and high-
lighting the formulation, development and advantages of deep neu-
ral networks. Then we discuss several major model architectures, 
from the basic multilayer perceptron (MLP) and advanced deep 
neural networks to hybrid models with other optimization methods, 
emphasizing their potential to design photonic crystals, metama-
terials, plasmonic nanostructures and integrated silicon photonic 
devices (Fig. 1). The models can map design parameters (such as 
geometry, material, topology and spatial arrangement) and optical 
characteristics (such as polarization, phase, wavelength and orbital 
angular momentum), enabling both forward prediction and inverse 
design. Finally, we comment on the challenges and perspectives of 
this emerging interdisciplinary research area, with its potential to 
create a new science and engineering paradigm in which photonics 
and artificial intelligence (AI) are interfaced with each other.

Background
Historically, deep learning can be traced back to the 1940s, and it 
went through many different names before becoming popularly 
known by this term25. Originally, some of the learning algorithms 
were intended to computationally model the process of biological 
learning—that is, to model how learning happens in human brains. 
Therefore, deep learning was known by the term artificial neural 
networks (ANNs) since the 1980s, accompanied by the second wave 
of AI research, which largely emerged through a movement called 
connectionism26. During this period, the milestone was the famous 
paper written by David Rumelhart, Geoffrey Hinton and Ronald 
Williams in 198627, in which the authors modified and reiterated 
the importance of the original back-propagation algorithm, mak-
ing it much faster than earlier approaches to learning and allowing 
it to solve previously insoluble problems. The modern era of neu-
ral network research began with a breakthrough in 2006: Hinton, 
who later coined the term deep learning, showed that deep neural 
networks could be efficiently trained using a strategy called greedy 
layer-wise pretraining28. Deep learning then gained broad popular-
ity, as researchers were able to train deeper neural networks than 
had been possible before, and the importance of depth of the model 
architecture was theoretically realized. Aided by the ever-increasing 
scale of available data, deep learning still leads the current boom in 
AI research, with the performance surpassing previous models by a 
large margin, or even beating humans29.

In the context of photonics research, the introduction of deep 
learning (or more appropriately ANNs, at that time) dated back to 

the 1990s during the second prevalence period of AI research. This 
interdisciplinary field primarily featured extensive work from the 
microwave community, where ANNs were used as a computer-aided 
design tool for fast prototyping of microwave devices and 
radio-frequency circuits30. The success of ANN-aided design was 
attributed to the revival of the MLP, the simplest form of a feedfor-
ward neural network that comprises several fully connected layers. 
Each neuron in a layer is connected to all neurons in the next layer 
with its own unique weight. Therefore, this is also called a fully con-
nected neural network or a dense neural network. At this early stage, 
the application of ANNs was straightforward. The design problem 
was often transformed to training an ANN that linked an input port 
with an output port. According to specific tasks, different variables, 
such as circuit or device parameters (for example, geometry, physi-
cal property, bias or frequency) or performance parameters (for 
example, S-parameters, voltage, current or power) were carefully 
chosen to feed to each port. Based on this scheme, many microwave 
design problems were readily solved by ANNs, including transmis-
sion lines31, vias32, filters33, amplifiers34 and antennas35.

The use of ANNs in microwave and other photonic designs fol-
lows a standard supervised learning paradigm, which aims to find 
a mapping between input variable X and output variable Y. The 
training process is to optimize the model parameters to make it an 
accurate representation of the desired mapping, on a previously col-
lected training dataset containing examples of X and its correspond-
ing label Y. Starting with random initialization, this data-driven 
learning approach modifies the model parameters iteratively on the 
training dataset according to a specific loss function evaluated on 
true labels Y, until a convergence occurs and the generalized model 
is able to predict unseen data. It is very different from conventional 
optimization approaches, either gradient-based or gradient-free, 
in which no such pre-collected input–output pairs are available, 
and the optimization of given targets is guided by certain rules 
in a case-by-case manner. To efficiently train an ANN model, the 
back-propagation algorithm was developed. Detailed explanations 
of the basic ANN structure and the back-propagation algorithm are 
presented in Box 1 and Box 2, respectively.

The interplay between microwave research and ANNs, as the 
first attempt to combine electromagnetics with AI, was not a coin-
cidence. On the one hand, most designs of microwave devices can 
be decomposed into optimizing some parameters for a given target, 
both of which can be conveniently represented by a few variables. 
With well-understood physics, mature simulation tools and thus lit-
tle difficulty in data acquisition, finding the relations between these 
variables is less complicated for an MLP model. On the other hand, 
more complex photonic designs such as plasmonic nanostructures, 
metamaterials, photonic crystals or silicon photonic devices were 
still in their infancy, with limited understanding in the commu-
nity. These structures and devices, featuring deep sub-wavelength 
dimensions, large design flexibility, extreme dispersions or compli-
cated performance characteristics, were not tractable to the shallow 
ANN model at that time. Related research then stagnated until the 
recent epoch-making development of deep learning.

The past decade has witnessed the rise of deep learning with 
unprecedented impact on a plethora of research topics. With the 
invention of new training and regularization techniques such as 
‘ReLU’ (rectified linear units) activation36, dropout37 and batch 
normalization38, it is now feasible to design and train deeper and 
deeper neural networks that can exploit larger datasets with better 
performance. Meanwhile, advanced model architectures have been 
proposed or improved to solve tasks in specific fields of machine 
learning and pattern recognition, such as the convolutional neural 
network (CNN)13 for image recognition, recurrent neural network 
(RNN)39 for natural language processing, generative adversarial 
network (GAN)40 and variational autoencoder (VAE)41 for image 
generation. The photonics community also benefited from the rapid 
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advances in deep-learning techniques. Unlike rule-guided optimi-
zation that explores the design space by following certain strate-
gies case by case, deep learning, as a data-driven method, aims to 
describe the design space holistically, using the training data as 
samples. Therefore, with generalization ability within a given design 
space, deep learning can produce fast and accurate designs without 
the need for case-by-case, time-consuming numerical calculations. 
Well-trained deep-learning models can directly set up a mapping 
from design to optical properties of target photonic devices, and 
vice versa. In addition, deep learning can interact with traditional 
optimization methods to improve the algorithm performance.

Specific and representative examples
In this section, we will discuss some relevant model architectures 
and their applications in solving photonics problems.

Multilayer perceptron. Although the architecture is rather sim-
ple, the MLP model, as illustrated in Fig. 1, has been theoretically 
proven as a universal approximator that is capable of fitting any 
continuous functions with a finite number of neurons42. In modern 
deep-learning models with sophisticated and task-specific architec-
tures, MLP often serves as a bottleneck layer to extract meaningful 
features as a compact representation of high-dimensional data such 

Polarization

Inverse design

Forward prediction

Wavelength

Deep learning

Photonic crystal Phase

Metamaterial

Orbital angular momentum

Silicon photonic device

Plasmonic nanostructure

Convolutional network Generative modely
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sx

Recurrent network

Multilayer perceptron Hybrid model

Fig. 1 | Applying deep learning to solve photonic design problems. Linked by the hub of data-driven methodology, deep learning associates various 
model architectures (for example, multilayer perceptron, convolutional network, recurrent network, generative model or hybrid model) with specific 
photonic design tasks (for example, photonic crystal, metamaterial, plasmonic nanostructure or silicon photonic device). The modelling process takes 
into consideration both optical characteristics (such as polarization, phase, wavelength and orbital angular momentum) and design parameters (such as 
geometry, material, topology and spatial arrangement). x, input variable; s, recurrent neuron; y, output variable; wrec, weights for feedback connection; wx, 
weights for input variables.
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as images. Even before the astounding success of deep learning in 
computer vision13, researchers explored MLP in photonics-related 
domains following the design schemes devised by the microwave 
community. The potency of these models was largely limited by 
immature training strategy, lack of data and thus shallow model 
architecture.

In 2018, Itzik Malkiel and co-workers reported a bidirectional 
MLP-based deep-learning model that could be used to design plas-
monic nanostructures43. In an advance on earlier work, the research-
ers managed to model the intricate physical relationship between 
photonic structures and their optical characteristics by resort-
ing to a ‘deeper’ network configuration. As shown in Fig. 2a, the 
structure of interest is an H-shaped metallic structure represented 
by eight parameters: three continuous parameters (the length and 
rotation angle of arms) and five binary parameters (existence of 
certain arms). The design targets are two reflection spectra under 
the illumination of light polarized along the horizontal or vertical 
direction. Each spectrum is discretized into 43 data points, and the 
material properties (such as permittivity of the indium tin oxide 
adhesion layer and hosting materials) are represented as a vector of 
25 parameters. A geometry-predicting network of eight group lay-
ers and a spectrum-predicting network of six layers are trained on 
18,000 samples so that the model can simultaneously function as 
a fast simulator and an inverse design tool. The scale of the data-
set, input complexity and the depth of the model show that, from 
a data-driven view, deeper models armed with larger datasets are a 
potential alternative approach to solve photonic design tasks.

Meanwhile, to deal with specific photonic problems, adapta-
tion of the MLP-based model burgeoned, with improvements in 
the model architecture, training strategy and application. Wei Ma 
and co-workers reported a deep-learning model with two bidi-
rectional neural networks that were integrated by an ensembled 
learning strategy to achieve on-demand design of chiral meta-
materials, which exhibit distinct responses when incident light is 
left-circularly polarized (LCP) or right-circularly polarized (RCP)44. 
The chiral metamaterial comprises two twisted split-ring resona-
tors placed on a metallic back-reflector (left panel in Fig. 2b). Two 
bidirectional neural networks, termed the primary network and 
auxiliary network respectively, are constructed to model the inter-
connection of three physical quantities, namely reflection spectra, 
circular dichroism spectra and design parameters. By introducing 
the auxiliary network, the accuracy of the forward prediction of 
spectra around resonances (middle panel in Fig. 2b), as well as the 
inverse retrieval of the design parameters, is substantially improved. 
The model functionality is also extended, enabling retrieval of pos-
sible metamaterial design from simple requirements on several 
parameters of desired chiroptical response, or direct prediction 
of the circular dichroism spectrum from design parameters (right 
panel in Fig. 2b).

When trained on large datasets, MLP-based models for inverse 
design often fail to converge, since there exist multiple candidates 
satisfying similar requirements but with very different designs. To 
solve this, Dianjing Liu and colleagues proposed a tandem train-
ing method for inverse design45. The idea is to first train a forward 
modelling network, mapping the design to optical responses. This 
pretrained forward network is then connected to the output of the 
inverse design network, with the forward prediction error serving as 
the supervision signal. By indirectly training in this tandem config-
uration, the inverse retrieval outputs are forced to converge to only 
one possibility guided by the forward model, efficiently solving the 
data inconsistency issue that arises from the fundamental property 
of non-uniqueness in the inverse design problem.

Instead of focusing solely on the inputs and outputs, MLP-based 
models, as universal approximators of functions, also allow gradi-
ents to be calculated analytically. John Peurifoy and colleagues used 
a single neural network to approximate light scattering by multi-
layer nanoparticles, where the analytical gradient obtained from the 
model ewas used for structural optimization given specific require-
ments in the spectra46. They showed that, guided by the analytical 
gradient from an MLP model, the single-band high scattering effect 
in core–shell nanoparticles can be efficiently optimized (left panel 
in Fig. 2c). They also made a quantitative comparison between a 

Box 1 | Fully connected neural network

A fully connected neural network with L layers consists of one 
input layer, one output layer and L − 2 hidden layers. Each neu-
ron in a given layer is connected to every neuron in the next 
layer, but without interlayer connections. The neurons process 
the input data layer by layer with learnable parameters, namely 
weights and biases. Specifically, let us denote the weight from the 
kth neuron in the (m − 1)th layer to the jth neuron in the mth 
layer as wm

jk

I
, and the bias of the jth neuron in the mth layer as bmj

I
. 

Then, the output of the jth neuron in the mth layer, denoted as 
amj
I

, can be computed as a weighted summation of the outputs 
from the previous layer zmj

I
 followed by a nonlinear activation 

function σ(·), that is

amj ¼ σ
X

k
wm
jka

m�1
k þ bmj

 
¼ σ wmam�1 þ bm

� 
¼ σ zmj

 
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In a matrix and vector notation, the learnable model parameters 
in layer m include a weight matrix wm ¼ wm

jk

� �
j1≤ j≤ jj j;1≤ k≤ kj j

I

 
and a bias vector bm ¼ bmj

� �
j1≤ j≤ jj j

I

. The nonlinear function 
σ(·), also known as an activation function, is crucial as it enables 
the neural network to tackle highly complex data representation 
instead of degrading to a simple linear mapping. Popular choices 
of activation function include the sigmoid, hyperbolic tangents 
or rectified linear units. Consequently, in the forward pass, the 
input data flow from one layer to the next, being linearly summed 
and nonlinearly activated at each stage, similar to the electrical 
signal flowing in biological neurons and synapses (shown as 
black arrows).

To estimate the performance of the neural network, a cost 
function C(·) should be defined to measure the discrepancy 
between the network output and the desired output. The cost 
function takes the outputs of the last layer and the ground-truth 
label as input and returns a scalar value as the error to be 
minimized. To adjust the model parameters properly, the 
learning algorithm computes the gradient of the cost function 
with respect to each weight and bias, indicating how much the 
error would increase or decrease if the parameter is increased by 
a tiny amount. Then each parameter is adjusted in the opposite 
direction to its gradient.
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deep neural network and interior-point methods, a numerical 
inverse design algorithm suitable for nanoparticles. Under the same 
error threshold during inverse design, the runtime of the neural 
network is two orders of magnitude shorter than numerical meth-
ods. Even more notably, as illustrated in the right panel of Fig. 2c, 
with the increase of design complexity (that is, number of nanopar-
ticle layers), the neural network shows a linear increase in runtime, 
in contrast to a polynomial increase in runtime (with an exponent 
of 4.5) for numerical methods. These results indicate that within  
the same accuracy standard, neural networks, once fully trained, 
beat conventional numerical inverse design methods by a large mar-
gin in speed.

Following these first forays into applying data-driven method-
ology in photonics research, deep MLP models and their variants 
have been extensively studied for many photonic design tasks, 
including topological photonics47, integrated silicon photonics48, 
colour generation from nanostructures49,50, metamaterials51–53, plas-
monic structures54 and photonic crystals55. For instance, Fig. 2d 
illustrates topological photonic structures whose edge-state dis-
persion is well reconstructed by an MLP model47. In work shown 
in Fig. 2e, the researchers propose to use deep learning to design 
silicon-on-insulator-based 1 × 2 power splitters with various target 
transmission ratios at two ports (T1 and T2), in which the device 
structure is represented by a matrix of binary variables, indicat-
ing whether the silicon is etched or not at certain coordinates48. In  
Fig. 2f, the MLP approach is applied in colour-generation meta-
surfaces, and colour pixels composed of HfO2 nanopillars are opti-
mized by the model to form a wide colour gamut49.

In addition to design problems, researchers have also developed 
sophisticated MLP models to tackle other problems in photonics, 
such as modal classification and effective refractive index retrieval 
in waveguides56,57, dimension reduction to reveal underlying phys-
ics58 and near-field manipulation of plasmonic nanoantennas59. As 
the plain form of the deep-learning model, MLP requires vectorized 
input and output. By parameterizing model inputs and outputs into 
vectors composed of several discrete and dimensionless elements, 
the MLP model can be adapted to a broad range of photonic appli-
cations regardless of the underlying physics.

Advanced deep-learning techniques. Although MLP models offer 
an effective approach for many photonic tasks, the simple connec-
tions in the model still pose some difficulties when the intrinsic 
structure, target response and design space are either multimodal 
or hard to parameterize. Therefore, application-specific model 
architectures have been invented for photonic research or trans-
planted from other fields, including CNNs specialized to input 
with local semantic correlation, RNNs for time-dependent inputs 
and deep generative models to deal with structured-output con-
ditions. Such advanced models can extend the functionality and 
improve performance in many photonic design problems, which 
are discussed below.

Convolutional neural networks. In deep learning, a CNN is a 
class of deep networks that extracts the features of the inputs by 
using convolution operations on the output of each layer. Owing 
to the nature of the convolution operation, a CNN can capture the 
local correlation of spatial information in images. In photonics 
research, a CNN is an ideal candidate to process data represented in 
high-dimensional spaces, such as photonic patterns represented as 
images, and spectral responses of given photonic devices. As a coun-
terpart of CNN, transposed CNN (TCNN) uses the convolution in 
‘reversed’ order, enabling the generation of high-dimensional data 
from low-dimensional vectors. TCNNs are commonly implemented 
as a part of generative models for the discovery and design of pho-
tonic structures with large degrees of freedom. The basic architec-
tures of CNN- and TCNN-based generative models that transform 

Box 2 | Back-propagation algorithm

A back-propagation algorithm is used to train a neural network 
by only one backward pass from the output layer to the input 
layer, which is a practical application of the chain rule for deriva-
tives of a multivariate function. To better illustrate the procedure 
of back-propagation, we introduce an intermediate error vector, 
δl ¼ ∂C=∂zl1; ∂C=∂z

l
2; ∂C=∂z

l
3 ¼

� �

I
, which represents the partial 

derivative of cost C with respect to the weighted input in layer l. 
Then naturally at the last layer (layer L), we have

δL ¼ ∇aCð Þ  σ0 zL
� �

ð2Þ

where the Hadamard product ⊙ denotes an elementwise product 
of two vectors. Note that both the cost function C(aL) and activa-
tion function σ(zL) have an analytical form, so the error value δL 
at the last layer can be directly obtained. Similarly, by applying 
the chain rule of partial derivatives, the error vector of layer l 
(other than the last layer), δl, can be calculated from the errors of 
the next layer δl+1 by

δl ¼ wlþ1
� T

δlþ1
h i

 σ0 zl
� 

ð3Þ

Equations (2) and (3) represent the central idea of the 
back-propagation procedure, where the cost, initially generated 
from the discrepancy between network output and target 
output, backflows from the last layer to the first layer, with the 
intermediate error of each layer retained. Then the quantities 
of real interest, ∂C=∂wl

jk

I
 and ∂C=∂blj

I
, are simply related to those 

errors as follows

∂C

∂wl
jk

¼ al�1
k δlj ð4Þ

∂C

∂blj
¼ δlj ð5Þ

With the partial derivatives of the cost function C with respect 
to all of the learnable parameters in the neural network — that 
is, the weight matrices wl and bias vectors bl for all layers (l = 1, 
2, …, L) — the model can then be trained by stochastic gradient 
descent (SGD). In the SGD algorithm, the training data are 
shuffled and then divided into several batches, each containing 
only a small portion of all data. The training step consists of 
feeding the network with a batch of data, computing the outputs 
and the errors, back-propagating to compute the average gradient 
for this batch, and adjusting the weights and biases accordingly.

Concretely, we need to define a hyper-parameter called the 
learning rate η, to control how much the parameters are modified 
as a portion of their gradients with respect to the cost in this 
batch. For a batch containing M training data, according to 
equations (4) and (5), we have the following update rules for 
weights and biases:

bl ! bl � η

M

X
x
δx;l ð7Þ

The training step is repeated many times until the value of 
the cost stops decreasing. After training, the performance of the 
model is evaluated on a different test set, containing samples 
not seen by the model during training, to test its generalization 
ability.

wl ! wl � η

M

X
x
δx;l ax;l�1

� T ð6Þ
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data between high-dimensional images and low-dimensional fea-
ture vectors are illustrated in the lower panels of Fig. 1 (second and 
fourth insets, respectively).

CNNs have been used in various optics and photonics prob-
lems, such as the inverse scattering problem60, wavefront correc-
tion61, digital coding metasurfaces62,63, and prediction of optical 
properties in complex photonic and materials systems64,65. The 
convolution operation in a CNN is translationally symmetric, 
making it suitable to model periodic photonic structures such 
as photonic crystals or metamaterials. These structures, usually 
represented by two-dimensional (2D) images, inherently satisfy 
translation invariance when the periodic boundary condition is 
applied in the numerical simulations. Recently, Takashi Asano and 
co-workers used a neural network consisting of CNNs to approxi-
mate the Q-factor of photonic crystals55. Back-propagation was 
used to optimize the positions of nanocavities to greatly improve 
the Q-factor from 3.8 × 108 to 1.6 × 109, as shown in Fig. 3a. 
Besides the basic architectures of CNNs, advanced network struc-
tures including residual networks66 and inception networks67 have 
been introduced to enhance the performance and capability of the 
network. These network structures can be used to train surrogate 
models for the simulation of complex photonic structures with 
large degrees of freedom68.

Recurrent neural networks. RNNs tackle problems associated with 
sequential data such as sentences and audio signals. As shown in 
Fig. 1 (lower panels, third inset), the network receives sequential 
data one at a time and incrementally generates new data series. For 
photonic design, RNNs are suitable to model optical signals or spec-
tra in the time domain with a specific line shape originated from 
various modes of the resonance. RNNs have been implemented 
to analyse optical signals and equalize noises in high-speed fibre 
transmission69. In combination with CNNs, RNNs were also used 
to improve the approximation of the optical responses of nano-
structures represented in images68. Figure 3b (left panel) presents 
random silver nanostructures to be simulated. With the help of an 
RNN, the network is able to predict the absorption of the structure 
from 800 nm to 1,700 nm, showing excellent agreement with full 
wave simulation (Fig. 3b, right panel). The performance of RNNs 
can be enhanced by adopting advanced varieties of RNNs, such as 
long short-term memory39 and gated recurrent units14. Network 
systems hybridizing CNNs and RNNs are promising techniques to 
model and design photonic devices that manipulate unconventional 
spatiotemporal properties of light.

Deep generative models. Instead of determining the conditional 
distribution and thus decision boundaries, generative models 
describe the joint distribution of the input and output to opti-
mize a certain objective in a probabilistically generative manner. 
Unlike their deterministic counterparts, such models can handle 
one-to-many mapping and produce structured outputs given  

prescribed requirements, as illustrated in Fig. 1 (lower panels, 
fourth inset). Empowered by deep-learning algorithms, deep gen-
erative models can produce data that replicate in the same way as 
or are similar to the training dataset. An autoencoder (AE) consists 
of an encoder and a decoder. The encoder maps the training data 
into a reduced-dimensional space, that is, latent space, while the 
decoder reconstructs the variable in the latent space into the train-
ing data. AEs are used to reduce the dimensionality of the design 
space and optical response features of photonic devices, providing 
essential information on the light–matter interaction for device 
optimization58.

Similar to an AE, a variational autoencoder (VAE) is con-
structed by adding probabilistic perturbation in the latent space 
of the AE41. The structure of a VAE is illustrated in Fig. 3c (top 
panel). Because the latent space is a continuous representation of 
the training data, new designs can be constructed by sampling the 
latent space70. Leveraging the reduced dimension and continu-
ity of the latent space, Wei Ma and colleagues used a VAE-based 
generative model to encode the meta-atoms of double-layered 
chiral metamaterials and their optical responses, enabling the 
investigation of the complex relationship between structure and 
performance without extensive data collection71. Figure 3d (left 
panel) shows the required circular dichroism spectrum with a 
sharp peak at 60 THz. The VAE-based framework can identify a 
double-layered metamaterial with a circular dichroism spectrum 
replicating the desired one (right panel). More importantly, the 
model can solve the one-to-many mapping inverse problem and 
come up with distinct metamaterial structures to satisfy the same 
requirement of chiroptical responses.

The GAN, as shown in Fig. 3c (bottom panel), is another class of 
deep generative model constructed with a generator and a discrimi-
nator40. The generator is trained in an adversarial manner to create 
samples that, ideally, form a distribution indistinguishable from the 
training dataset. With the ability to generate massive nanostruc-
tures within short time, GANs have been used in the design and 
optimization of dielectric and metallic metasurfaces in a stochastic 
manner72. Recently, Zhaocheng Liu and co-workers have proposed 
a framework leveraging GANs to inversely design metasurface 
nanostructures that match on-demand design objectives73. A GAN 
and a pretrained simulator jointly identify the topology of nano-
structures from a user-defined geometric dataset. In Fig. 3e, given 
a user-defined transmittance spectrum for the inverse design prob-
lem (left panel), the framework can identify a nanostructure with 
a spectral behaviour that matches the input one with high fidelity 
(right panel).

Besides the standard architecture of the GAN and VAE, some 
other varieties of generative models can also be implemented for 
the discovery and design of photonic structures. For instance, 
compositional pattern-producing networks (CPPNs) have been 
reported as serving as a generator in the GAN framework to pro-
duce high-quality nanostructure patterns for the inverse design of 

Fig. 2 | Photonic designs enabled by an MLP model. a, A bidirectional MLP model for design of H-shaped plasmonic nanostructures (left) and the 
predicted (by deep-learning model), simulated (by Comsol software) and measured spectra of retrieved H-shaped structures under different polarization 
conditions (right). The numbers in boxes denote the number of neurons in each specific layer of the neural network. DNN, deep neural network. b, A 
deep-learning model for chiral metamaterial design. AN Mod., modified by auxiliary network (AN); Pred., predicted; Simu., simulated; RL, left circularly 
polarized (LCP) input and right circularly polarized (RCP) output; RR, RCP input and RCP output; LL, LCP input and LCP output; CD, circular dichroism. c, 
Deep-learning model as an optimization tool by providing analytical gradients, which can realize single-peak high scattering by a multilayer nanoparticle 
(left) with a speed two orders of magnitude faster than that of the conventional numerical optimization (right). d, Reconstruction of edge-states dispersion 
by MLP models. Left: direct problem solution. Right: inverse problem solution. e, Deep neural network to model silicon-on-insulator-based 1 × 2 power 
splitters. T1 and T2 denote transmission ratio of port 1 and port 2, respectively. f, Colour generation from nanostructures designed by deep learning. Top: 
AI-prism logo captured by an optical microscope. Bottom: scanning electron micrograph of the corresponding colour pixels. Figure reproduced with 
permission from: a, ref. 43, d, ref. 47, e, ref. 48, under a Creative Commons licence (http://creativecommons.org/licenses/by/4.0/); b, ref. 44, American 
Chemical Society; c, ref. 46, © The Authors, some rights reserved; exclusive licensee AAAS. Distributed under a Creative Commons licence (http://
creativecommons.org/licenses/by-nc/4.0/). Reprinted with permission of AAAS; f, ref. 49, RSC.
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metasurfaces with multiple meta-atoms in a unit cell74. Figure 3f 
(left panel) presents the designed gradient metasurface, generated 
from a CPPN-GAN, that partially converts LCP incident light to its 

cross polarization with a constant phase gradient. Figure 3f (right 
panel) presents the polarization states of incident and diffracted 
light measured after a quarter waveplate, confirming the switch 
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of polarization. Other examples of generative models applied in 
photonics research have also been reported. For example, U-net, 
a deep neural network architecture originally designed for image 
segmentation, has been used to accurately predict the near-field 
optical responses of arbitrary 3D nanostructures, enabling the 
approximation of various far-field responses of nanostructures75. 
By combining traditional optimization techniques and a gen-
erative model, global optimization of a 1D meta-grating can be 
achieved with high efficiency for various wavelengths and deflec-
tion angles76.

Optimization assisted by deep-learning algorithms. Recent 
advances in material optimization, along with the progress of  
nanofabrication techniques allow global challenges in quantum 

information77, energy78, space exploration79 and secure communica-
tion80 to be addressed with nanophotonic devices. However, such 
inherently complex problems require highly constrained, multipa-
rametric optimization of the device. Conventionally, adjoint, topol-
ogy and genetic optimization methods have long been used to tackle 
a wide range of inverse problems in photonics. These methods usu-
ally require a lot of computation power and time, which scale up 
even further with the increasing dimension of the optimization 
parametric space and the number of constraints. Such resource 
heaviness substantially limits the applicability of the conventional 
techniques to the aforementioned problems, which demand opti-
mization over extended parametric space including both geo-
metrical optimization sub-space and material parametric domain. 
By hybridization of conventional optimization methods with 
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advanced deep-learning algorithms, it is possible to exploit the best  
aspects of both approaches and greatly reduce the required compu-
tational resources.

Coupling deep generative networks (such as GANs and differ-
ent types of AE) with an adjoint optimization framework has been 
explored for advancing both speed and performance. This concept, 
as schematically shown in Fig. 1 (lower panels, fifth inset), exploits 
the strong correlation between the device topology (geometrical 
shape) and its optical response. During the training phase, a gen-
erative network learns characteristic geometrical features of the 
pre-optimized device designs and uses this knowledge to construct a 
compressed representation of the design space. Recently, it has been 
demonstrated that conditional GANs can be efficiently trained on 
labelled topology optimized meta-grating designs for the rapid gen-
eration of a large family of highly efficient device designs81 (Fig. 4a).  
Particularly, it has been shown that the GAN is able to learn and 
generalize the main features of the meta-gratings from the train-
ing set. This allows generation of devices with operating parameters 

(wavelength and deflection angle) beyond those used during the 
training. As shown in Fig. 4b, while GAN-generated designs show 
similar performance to those obtained from the direct topology 
optimization, GAN-assisted optimization generates five times as 
many high-performance devices in the same time.

Moreover, it has been demonstrated that generative net-
works can be directly hybridized with the topology optimization 
method by substituting the discriminator with a direct electro-
magnetic solver76. By taking topology optimization of a dielectric 
meta-grating as a showcase example (Fig. 4c), Jiaqi Jiang and 
Jonathan Fan have demonstrated that this approach allows them to 
continuously optimize the device distribution until it converges to 
a cluster of high-efficiency devices76. Physics-based gradients, cal-
culated based on forward and adjoint electromagnetic simulations, 
are used for error back-propagation during the training phase of 
the generator, ensuring the direct connection of the compressed 
space formation of the generative network with enhancing device  
efficiency. Moreover, such an approach avoids the process of  
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generating the training set, since the generative network learns the 
physical relationship between device geometry and optical response 
directly through electromagnetic simulations. The loss function is 
constructed such that it gives higher weight to devices with better 
efficiency and decreases the impact of low-efficiency designs that 
are potentially locked in local optima. As a result, one can nar-
row down the compressed space representation of the generative 
network to the sub-domain of highly efficient designs. The pro-
posed approach only needs 10% of the computational cost of direct 
adjoint-based topology optimization calculations.

More recently, an adversarial autoencoder (AAE), consisting of 
three neural networks (encoder, decoder and discriminator), has 
been coupled with a topology optimization framework for the devel-
opment of a thermal emitter design82. The AAE-based approach 
ensures almost ideal (98%) thermal emission reshaping efficiency 
and requires a third of the computation time of direct topology opti-
mization. By interfacing an AAE-based approach with a pre-trained 
CNN network, one can achieve up to a 4,900-fold speed-up in com-
parison with direct topology optimization. Along with efficient 
optimization search, such an approach promises unparalleled con-
trol over the data distribution within the compressed design space. 
The latter fact opens up the possibility of performing global opti-
mization searches directly within the high-dimensional compressed 
design space, avoiding time-consuming post-processing of the gen-
erated designs.

Optimization within high-dimensional parametric space can 
be efficiently realized by adapting one of the dimension-reduction 
machine-learning algorithms. Recently, linear principal component 
analysis has been used to map and characterize a multiparameter 
design space of a photonic system83. As shown in Fig. 4d, the devel-
oped approach consists of three main steps: (1) construction of a 
sparse collection of pre-optimized designs by applying conventional 
optimization methods; (2) determination of a lower-dimensional 
sub-space of highly efficient designs by applying a dimensionality 
reduction algorithm to the high-dimensional parametric space of 
pre-optimized designs; and (3) exhaustive mapping of the design 
sub-space to determine the continuous region of highly efficient 
designs. This approach has been applied for the multiparametric 
optimization of a vertical fibre grating coupler (Fig. 4e). It has been 
shown that by applying the dimensionality algorithm, the complex-
ity of the problem can be exponentially scaled down and that the 
continuous sub-space of grating couplers with comparable fibre 
coupling efficiencies can be mapped84. Such global analysis ensures 
efficient multiparametric optimization and reveals the limitations 
of performance or structure of the given design configuration.

Researchers have developed another approach to address one of 
the major bottlenecks of the conventional optimization techniques, 
namely intensive direct electromagnetic simulations. This approach 
uses data-driven methods for accelerating Maxwell’s equation 
solver, which is involved in the optimization process. The feasibility 
of using data-driven methods for solving partial differential equa-
tions has been investigated very recently, with the demonstration 
of learning an ‘optimal’ approximation of derivatives needed for 
time-domain simulations85 or using neural networks for solving 
partial differential equations86,87. Particularly, it has been demon-
strated that data-driven methods allow nonlinear partial differential 
equations to be solved in the time domain at resolutions 4 to 8 times 
coarser than required by standard finite-difference methods. By 
using the CNN, the generalized minimal residual algorithm for the 
solution of frequency-domain Maxwell’s equations has been accel-
erated88. This approach realizes an order-of-magnitude reduction 
in the number of iterations required for solving frequency-domain 
wave equations when trained on a dataset of wavelength-splitting 
gratings. The proposed approach can be directly applied within 
gradient-descent-based optimization of a photonic device, where 
many simulations with similar material distribution are required.

Discussions and perspectives
In this section, we will comment on the directions, challenges and 
perspectives of interfacing deep learning with photonics.

Deep learning for complete control of light. It is believed that 
deep learning can serve as a powerful tool in finding complex rela-
tions between a structure and its optical responses. Nevertheless, 
at present, most literature related to the topic of the present review 
is limited to the study of the optical properties of a structure in 
terms of the optical spectra (reflection, transmission, scattering, 
absorption and so on) under the illustration of linear or circular 
polarization. Spectra can be conveniently discretized into vectors43 
(single spectrum) or matrices44 (multiple spectra), and thus can be 
readily incorporated into the deep-learning model. To aid in the 
complete control of light, one immediate task that we need to work 
on is to enhance the capability of deep-learning models with more 
degrees of freedom, such as the phase74, angular momentum, trajec-
tory, nonlinearity, topology and near-field distributions75. This will 
lead to new devices including but not limited to multidimensional 
meta-holograms showing distinct images at different wavelengths, 
topological photonic crystals for robust light transport that is 
immune to defects, and controllable nanoscale hotspots to enhance 
the emission of single quantum emitters.

Unlike a direct discretization, some pre-processing steps or mod-
ification of the model input–output may be required accordingly. 
For instance, one could consider using a periodic output activation 
for phase retrieval or using dimension reduction83 when dealing 
with near-field characteristics. Transfer-learning techniques89 may 
also help to construct versatile models for complete light control 
from base models trained with spectral responses. Reinforcement 
learning is another approach worthy of further exploration, to 
expand the photonic design capability50. Unlike supervised learning 
or unsupervised learning, reinforcement learning manages to max-
imize a cumulative reward by taking actions in the current envi-
ronment. This indirect optimization process balances the current 
knowledge and unknown domains, and could potentially investi-
gate more optical properties of photonic design tasks to realize com-
plete control of light.

The burden of data collection. Since deep neural networks contain 
thousands to millions of learnable parameters, a gigantic amount of 
labelled data is inevitable to train the network. However, generating 
data requires physical simulations or experimental measurements. 
Collecting a massive dataset is not always practical. In these circum-
stances, unsupervised and semi-supervised learning strategies can 
be leveraged to alleviate the burden of data collection. Unlike super-
vised learning, unsupervised learning algorithms, such as principal 
component analysis, and AEs/VAEs/GANs, require only a small 
number of labels, usually serving as tools for data clustering and 
dimensionality reduction. The processed data from unsupervised 
learning strategies can be analysed to unveil the structural param-
eters of the photonic devices that have most impact, assisting the 
neural network to recognize the essential information of the design 
without redundant data collection90,91.

Massive data collection can also be mitigated by merging the 
deep-learning models with underlying physics. For example, 
instead of training a model with enormous datasets to approximate 
the bidirectional relationship between physical structures and their 
responses, deep learning can be adopted as intermediate steps to 
efficiently solve partial differential equations that describe the 
physical systems87,88,92. Alternatively, learning the governing laws 
behind the physical phenomena can also reduce the dependence on 
data86,93. Deep learning in this strategy is usually used to extract fea-
tures from limited data for the regression of a few parameters that 
parametrizes the models or equations of the system. Furthermore, 
it is possible to generate a solution that satisfies certain partial  
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differential equations by physics-informed deep-learning models94. 
In other circumstances where a neural network is well trained for 
the approximation of certain physical processes, transfer learning 
can be applied to migrate the knowledge of the neural network 
to other similar simulation scenarios with substantially reduced  
data collection89.

Comparative advantages of deep learning over conventional opti-
mization methods. From the viewpoint of efficiency, a well-trained 
deep-learning model is faster by orders of magnitude than tradi-
tional optimization algorithms46, on the premise that enough train-
ing data are collected in advance. However, collecting data does not 
conflict with other traditional optimization strategies9, especially 
global optimization algorithms that extensively explore the solution 
space. The difference between data collection for deep learning and 
that for numerical optimization algorithms lies in how the models 
make use of data. For deep learning, the model actively accumulates 
training data that holistically describe the problem under investiga-
tion, so that the model is driven by data in the sense that the quantity 
and quality of pre-collected training data contribute to its perfor-
mance. In contrast, traditional numerical algorithms passively pro-
duce data in the iterative optimization steps, where data, more like a 
by-product, are mainly used to check how far the optimization has 
proceeded and when the strategy needs to be changed. Usually, for a 
specific task, the quantity of data required by deep learning is much 
more than produced during a conventional optimization. However, 
data collection for deep learning is a one-time cost, as opposed to 
an ongoing cost as in the case of ab initio numerical optimization. 
This feature makes deep learning especially competitive in photonic 
design tasks of periodic structures such as metamaterials or pho-
tonic crystals, where a huge number of unit cells need to be opti-
mized to constitute a device or a system.

Meanwhile, balancing training time and run time for a 
deep-learning model requires efficient exploitation of data, prob-
ably in an online manner where data are continuously provided as 
the model evolves according to different tasks. Traditional optimi-
zation methods explore the design space guided by gradient infor-
mation (for example, level-set methods) or evolution process (for 
example, genetic algorithm). To some extent, deep learning has 
similarities with gradient-based optimization methods, because 
the optimization of the deep-learning model is also directed by the 
average gradient of the loss function with respect to all the training 
data. On the other hand, similar to gradient-free optimization that 
introduces more stochasticity to enlarge the possible design space, 
deep learning uses a large amount of pre-collected training data to 
extend the scope of design varieties far beyond what is achievable 
with optimization methods.

In conjunction with traditional numerical optimizations, a fast 
deep-learning approximator for the following optimization steps 
can be constructed by saving the simulation data right from the 
beginning of the optimization95,96. In these cases, the deep neural 
network is also capturing the gradients of the objective functions 
with respect to the input parameters. If a network is sufficiently 
reliable, performing local gradient descent optimization with gra-
dients calculated from the surrogate network is equivalent to the 
traditional adjoint methods. On the other hand, deep learning can 
help to identify a global minimum in various ways. For example, 
fast inference speed enables global search algorithms for the design 
of highly complex structures. Latent variable models and gen-
erative models are able to capture the underlying physics so that 
unnecessary exploration of the solution space can be avoided. In 
more practical cases, traditional optimization and data-driven 
methods can be jointly incorporated into the same design pipe-
line, where deep learning serves to identify solutions near global 
minimum and traditional optimization refines the performance to 
the extreme. Even if a true global optimum can hardly be found 

in a complex photonic design task, these optimization methods, 
including deep learning, always yield fairly good results beyond 
empirical designs. In some cases in which only a small amount of 
data can be collected in a reasonable time, incorporating statisti-
cal learning and other machine-learning algorithms to the design 
strategy is also advantageous. However, because deep-learning and 
machine-learning models always require sufficient training datas-
ets, data-driven approaches may not be an effective starting point 
in extreme instances where retrieving a single data point takes 
from hours to days. Instead, direct optimization such as Bayesian 
optimization could be considered before deep-learning models  
are applied.

Enlarging design space for ‘global’ photonic designs. Addressing 
modern multidisciplinary fundamental science and engineering 
challenges, such as those related to energy, security, data process-
ing and storage, as well as emerging quantum technology, requires 
multifunctional devices with highly constrained electromagnetic, 
chemical, thermal and mechanical properties. Thus far, optical 
technologies have mainly used photonic optimization in a restricted 
design space that is largely limited to structural topology (geom-
etry) and shape. Such optimization often omits in-depth feedback 
from other critical design layers including the evolution of electro-
magnetic properties with time or in harsh environments, as well as 
fabrication and characterization constraints. This represents a fun-
damental limitation, which prevents current optimization meth-
ods from providing efficient, ‘globally’ optimized solutions. For 
example, global optimization would be critical for multiparametric 
and multiscale optimization of structures based on nanophotonic, 
phase-change, nonlinear and gain material platforms, in which 
optical response depends strongly on material composition and the 
fabrication process. Further development of advanced hybrid opti-
mization schemes will be a key step to address such optimization 
challenges and seek potential answers for the ultimate achievable 
performance of a photonic device.

By integrating available material knowledge into the train-
ing process, latent space could be extended to include a rich con-
stituent material domain into the compressed representation. 
For instance, owing to temperature-dependent dielectric permit-
tivity of the refractory material platforms97, it is challenging to 
design metasurface-based thermal emitters for thermophoto-
voltaics that operate efficiently in a wide temperature range. If 
temperature-dependent dielectric permittivity functions of the con-
stituent material platform are incorporated into the training process, 
a ‘globally’ optimized design with robust emissivity response over a 
wide range of operating temperatures may be determined. Global 
optimization search within the extended compressed space will not 
only ensure optimization of the design topology but will also pro-
vide optimal material properties and composition, or even guide the 
fabrication process to achieve the best possible performance of the 
targeted photonic device, architecture and system. This approach 
could be used to address various nonlinear problems in photon-
ics, such as quantum entangled-state generation using spontane-
ous parametric down-conversion based on metastructures98. To be 
able to realize efficient entangled-state generation, it is important 
to optimize not only the optical resonance of the nanostructure but 
also the nonlinear properties of the constituent material. By inte-
grating the dependencies of the linear and nonlinear optical proper-
ties on the deposition parameters of the material into the training 
process, it would be possible to simultaneously optimize the topol-
ogy or shape of metastructures and retrieve the optimal deposition 
parameters of the host materials.

We envisage that the global optimization framework could 
become an essential part of a more generic, hierarchical 
machine-learning framework based on a multistep strategy. As an 
example applicable to photonic systems, the first step could be to 
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define the main target functionality of the device and determine the 
proper photonic concept that would give the optimal performance 
(for example, gratings, multilayers, photonic crystals or metasur-
faces). The second step would then be to choose the right material 
platform. This would require creating a wide database of known 
optical materials together with their properties and their evolution 
under changing temperature and other harsh environments. By 
using the available databases on chosen material platform proper-
ties, machine-learning-driven global optimization could then be 
used as the third step to obtain ultimate-efficiency device designs 
and to determine suitable fabrication (growth condition, doping 
level, stoichiometry and so on) and integration schemes.

Neuromorphic photonics. While the rapid advances in deep learn-
ing provide radically new approaches to solve photonic design 
problems, this assistance is not one-way but interactive99. ‘Big data’, 
the catalyst of deep learning, continues to revolutionize AI research 
with record-breaking improvements in various domains, while at the 
same time it causes an exponential increase in computational power 
and energy consumption. At present, most deep-learning algorithms 
are deployed in conventional computers with von Neumann archi-
tecture, whose serial nature is an intrinsic barrier to efficient support 
for neural networks. Even with some application-specific integrated 
circuits that are deliberately optimized to run deep-learning models, 
most industrial-grade models for practical applications still take a 
formidable time and cost to train. Superior to their electronic coun-
terpart in both speed and power consumption, photonic platforms 
for deep learning, including nanophotonic scatterers100, integrated 
silicon photonic chips101–103 and 3D-printed diffractive layers104, are 
under active investigation.

The tremendous acceleration of deep-learning models on an 
optical platform depends on the capability of parallel signal process-
ing of light, which makes matrix–vector multiplications in constant 
time with respect to the matrix dimension, in contrast to the qua-
dratic time complexity on a digital processor. Besides matrix mul-
tiplication, nonlinear activation functions play a key role in ANNs, 
enabling them to learn complex mappings when cascading multiple 
linear layers. Such nonlinear activation functions for an optical 
platform can be realized by using saturable absorption of 2D mate-
rials105, nonlinear electro-optic modulation in silicon106, or simply 
an external digital processor101, with implementation in a fixed or 
reprogrammable manner107.

Instead of implementing mathematical operations such as 
matrix multiplication and nonlinear activation in an ANN, opti-
cal components allow a biological neural system to be mimicked 
in a more analogous way. Optical spiking neural networks natu-
rally emulate the basic integrate-and-fire functionality of a biologi-
cal neuron, using on-chip optical components such as waveguides, 
wavelength-division multiplexers and ring resonators102,108,109. In 
particular, Wolfram Pernice’s group fabricated an all-optical spiking 
neuron circuit consisting of 4 neurons, 60 synapses and 140 optical 
elements in total, and successfully demonstrated its function of let-
ter recognition104. Training and learning in the system can be imple-
mented in either a supervised or an unsupervised manner. These 
neuromorphic photonic platforms can make use of the overwhelm-
ing advantages of light in speed and parallelism when processing 
information. The interactions between new photonic structures and 
deep learning may overcome the limitation of current computing 
approaches and systems, and potentially lead AI research to new 
horizons. Indeed, it has been demonstrated that inverse-designed 
metastructures can solve integral equations using electromagnetic 
fields110. On the other side, wave physics can also be regarded as 
an analogue recurrent neural network111. The potential of new pho-
tonic structures, some of which may be designed by deep learning, 
to enable unconventional computing and AI techniques is worthy 
of further exploration.

Summary
The concept of deep learning has gone far beyond being a compu-
tational analogy of biological neural systems and has emerged as 
a powerful tool that solves extremely complex problems by build-
ing up multilevel abstraction of massive data. For the photonics 
community, deep learning and other AI techniques are currently 
transforming the areas of optical design, integration and measure-
ments. Deep-learning techniques have already demonstrated their 
tremendous potential for photonic structure design, optimization of 
architecture, materials and entire optical systems, and will continue 
to uncover new ways to unparalleled speed-up of optical measure-
ments and even unlocking new optical effects.

In this Review, we have surveyed various model structures for 
photonic design, ranging from individual plasmonic nanoparticles 
to metamaterials comprising an array of meta-atoms, and to inte-
grated photonic devices. All of these remarkable developments 
have been demonstrated within the past few years, and further 
advances are expected as researchers with different backgrounds 
contribute to this emerging field. Deep learning and AI research-
ers should team up with optical scientists to develop unorthodox, 
physics-driven algorithms and networks that are not only robust, 
generative and interpretable while using fewer data, but also pro-
vide unconventional ways to realize unparalleled optical functional-
ities. Such cross-disciplinary approaches merging AI, photonics and 
materials platforms will allow for large-scale photonic designs with 
unique functionalities as well as new methods for optical charac-
terization, paving the way to high-speed super-resolution imaging, 
real-time detection and manipulation, efficient energy conversion 
systems and transformative advances in the area of quantum mea-
surements and metrology. On this path, the photonics community 
should ultimately build an ‘optical structures and materials genome’ 
to construct a comprehensive dataset of photonic concepts, archi-
tectures, components and photonic materials to enable hierarchical 
machine-learning algorithms that could provide ultimate-efficiency 
devices. This effort should be extended to realize all-optical plat-
forms to perform deep learning and other AI algorithms at the 
speed of light, ushering in an even brighter AI era.
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