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Abstract: Nanophotonics has been an active research field 
over the past two decades, triggered by the rising interests 
in exploring new physics and technologies with light at 
the nanoscale. As the demands of performance and inte-
gration level keep increasing, the design and optimization 
of nanophotonic devices become computationally expen-
sive and time-inefficient. Advanced computational meth-
ods and artificial intelligence, especially its subfield of 
machine learning, have led to revolutionary development 
in many applications, such as web searches, computer 
vision, and speech/image recognition. The complex mod-
els and algorithms help to exploit the enormous parameter 
space in a highly efficient way. In this review, we sum-
marize the recent advances on the emerging field where 
nanophotonics and machine learning blend. We provide 
an overview of different computational methods, with 
the focus on deep learning, for the nanophotonic inverse 
design. The implementation of deep neural networks with 
photonic platforms is also discussed. This review aims at 
sketching an illustration of the nanophotonic design with 
machine learning and giving a perspective on the future 
tasks.

Keywords: deep learning; (nano)photonic neural net-
works; inverse design; optimization.

1  �Introduction

Nanophotonics studies light and its interactions with 
matters at the nanoscale [1]. Over the past decades, it has 
received rapidly growing interest and become an active 
research field that involves both fundamental studies 
and numerous applications [2, 3]. Nanophotonics com-
prises several subdomains, including photonic crystals 
(PhCs) [4], plasmonics [5], metamaterials/metasurfaces 
[6–8], and other structured materials that can perform 
photonic functionalities [9]. Despite the different underly-
ing mechanisms, configurations, materials, and so forth, 
traditionally, the design of nanophotonic devices relies 
on physics-inspired methods. Human knowledge, such 
as the physical insights revealed by the study of simple 
systems, the experience obtained from previous practice, 
and the intuitive reasoning, provide guidelines to the 
design process. For example, knowing that an elongated 
nanoparticle responds more strongly to the incident elec-
tric fields that are polarized along its long axis, and that 
a ring-like structure supports magnetic resonances if the 
incident magnetic fields are perpendicular to the plane 
on which the ring lies, the combination of metallic wires 
and split ring resonators (SRRs) was proposed to demo-
nstrate the negative index of refraction [10], a milestone of 
metamaterials. The initial designs are usually examined 
by simulations solving the Maxwell’s equations, but they 
are less likely to match the desired performance directly. 
Therefore, adjustments to a handful of parameters and re-
evaluation by simulations need to be conducted repeat-
edly to approach the target. While remarkable success has 
been accomplished using this scheme, the trial-and-error 
procedure becomes computationally costly and time-inef-
ficient due to the continuously increasing complexity of 
the nanophotonic devices.

Inverse design tackles the design task in a different 
manner [11]. Without the need of physical principles for 
the initial guess, intended photonic functionalities are 
obtained by optimization in the design parameter space, 
which, based on advanced algorithms and combined sim-
ulations, seeks a solution that minimizes (or maximizes) 
an objective or fitness function related to the target. In 
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relation to solving the direct problems, optimization-
based methods require comparable computation power 
and time. Nevertheless, they allow one to search in the full 
parameter space and find designs that are non-intuitive 
but with optimal performance.

The recent blossoming of artificial intelligence (AI), 
especially the subfield of machine learning, has revolu-
tionized many realms of science and engineering, such as 
computer vision [12], speech recognition [13], and strategy 
making [14]. Inspired by the biological neural networks, 
artificial neural networks have dramatically changed the 
paradigm of data processing and powered the development 
of algorithms that can “learn” from data and perform func-
tionalities to complete complex tasks [15]. The associated 
technique of deep learning is thus considered a promising 
candidate for the inverse design of new materials [16–18], 
drugs [19], and nanophotonic devices [20–22] (Figure 1). In 

general, the role of deep learning in nanophotonic design 
is also to search the parameter space for a best fit of the 
target. But unlike optimization-based methods doing this 
for every task, which makes simulations recurrent efforts, 
deep learning algorithms are able to navigate in a smarter 
way by learning from a large dataset so that a solution can 
be found almost instantaneously after the learning phase. 
Without loss of design flexibility, this data-driven scheme 
markedly shortens the overall computation time when a 
common database is available for a group of applications. 
On the other hand, nanophotonic circuits that process 
coherent light are naturally suitable to build systems com-
patible with the framework of neural networks [23], while 
the speed and energy efficiency can be much higher than 
those of their electronic counterparts. Therefore, the appli-
cation between deep learning and nanophotonics is not 
one-way but interactive. As their blending is just beginning, 
it will be timely and beneficial to present an overview on 
this emerging field, from which interested readers can get a 
general idea and determine the directions of future research 
[24]. We notice that some related techniques, such as topol-
ogy optimization [25], inverse design [11], neuromorphic 
photonics [26–29], and reservoir computing [30] have been 
discussed by several recent review articles. Thus, we would 
also direct the readers to these references if interested.

The present manuscript is organized as follows. 
Section 2 summarizes the recent progress in nanopho-
tonic inverse design based on optimization. Popular 
techniques as well as representative examples will be 
introduced. In Section 3, we start by explaining the 
concept of deep neural networks (DNNs). Important appli-
cations in designing novel devices, discovering new phe-
nomena, and revealing underlying mechanisms are then 
discussed with details. Section 4 is dedicated to the efforts 
to perform deep learning with nanophotonic circuits and 
optical materials as hardware. Experimental results and 
theoretical models for all-optical deep learning makes 
this topic extremely attractive and promising. Finally, con-
cluding remarks and outlook will be given in Section 5.

2  �Nanophotonic design based on 
optimization techniques

Computation-wise there are many different ways to solve a 
photonic design problem, either direct or inverse, whereas 
the basis of any design strategy is that the optical proper-
ties of a given structure can be modeled with enough accu-
racy. For this purpose, a variety of computational tools 
have been developed, such as the finite-difference time 
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Figure 1: A dial illustration of computational methods and their 
potential applications in nanophotonics.
Items on the circumference indicate different applications (not in the 
order of timeline or importance), where computational methods can 
be employed in the design process. The second hand corresponds 
to traditional schemes based on numerical simulations. Many 
cycles of trial-and-error modeling are needed for a specific task, 
each giving an incremental advancement towards the final goal. 
The minute hand denotes various optimization techniques, such as 
genetic/revolutionary algorithms and gradient-based approaches. 
Supported by simulation techniques, optimization methods 
search the full parameter space for each task by minimizing the 
cost function, providing a more efficient framework for achieving 
complex functionalities. The hour hand represents deep learning. 
Although a sufficiently large amount of data needs to be generated 
(by simulations) first for training, once the training is complete, the 
network solves a design request almost instantaneously.
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domain (FDTD) method, finite element method (FEM), 
boundary element method (BEM), discrete dipole approxi-
mation, and rigorous coupled wave analysis. Despite their 
own pros and cons in fitting different applications, these 
approaches solve the governing equations of light waves, 
i.e. Maxwell’s equations. The simulated results are evalu-
ated by the designer or an algorithm for optimization, and 
the updated structure is sent back to the solver for the next 
cycle of simulation and optimization until the specified 
performance is reached.

To date, most popular algorithms used in the inverse 
design can be categorized into two groups: the evolution-
ary method, such as genetic algorithm [31, 32] and particle 
swarming optimization [33–35], and the gradient-based 
method, including topology optimization [36, 37], steep-
est descent, and so forth. Other approaches based on 
heuristics (simulated annealing [38, 39]) or nonlinear 
search have also been used. The main advantage of using 
these techniques over the traditional physics-inspired 
scheme is that it opens up the full parameter space and 
many non-intuitive designs can be obtained with optimal 
performance. In this section, we summarize the recent 
advances on nanophotonic design based on computa-
tional methods, primarily optimization techniques. Due 
to the complex intersections of the many applications and 
algorithms, priority will be given to the similarity between 
applications when the selected examples are grouped, 
while different design methods will be introduced the first 
time they appear in the text unless otherwise specified.

The earliest application of computational methods in 
nanophotonic inverse design dates back to the late 1990s, 
with the attempts to optimize the performance of dielectric 
waveguides [40] and to engineer the band gaps of PhCs [41]. 
Since then, continuous progress has been made along these 
lines [42–53], and some previously unattainable functionali-
ties have been made possible by using advanced algorithms 
and hardware [54–72]. Among the pioneers who intro-
duced various computational techniques into nanopho-
tonic inverse design, Sigmund and coworkers conducted 
a systematic study using the tool of topology optimization, 
which was originally developed for structural design [36, 
37] but has been applied to many other applications [25]. 
In topology optimization, the entire design domain is dis-
cretized into pixels, each being a design variable that repre-
sents the material property at that point. The total number 
of variables can thus be very large for a complex design task, 
and the structures are not restricted to any certain class of 
geometries. The iterative optimization procedure consists of 
repeated simulations and updates of the material distribu-
tion based on gradient computation. The latter is essential; 
otherwise the efficiency decreases dramatically, given the 

many design variables in topology optimization [73]. Figure 
2A exemplifies this technique with a PhC Z-bend [74]. It is 
well known that sharp bends in a waveguide will cause sig-
nificant bending loss and poor transmission. Conventional 
optimization methods that are not free from geometric 
constraints solve the problem by adjusting the hole sizes 
and disturbing the lattice in the whole bending area. Topol-
ogy optimization, in contrast, is shown to find with higher 
efficiency an optimized solution with only five holes being 
reshaped on the outer part of each bend. Despite the slight 
discrepancies between the designed pattern and fabricated 
structure, nearly 10  dB higher transmission was experi-
mentally achieved for a bandwidth of over 200 nm. In this 
specific problem, the broadband property was obtained 
by optimizations at a single wavelength. Nevertheless, 
any number of wavelengths can be used simultaneously 
to fit any desired spectra. In addition to waveguide bends, 
devices with increasing complexity, such as mode convert-
ers [78] and beam splitters [55, 63], have been reported by 
the same group.

Figure 2B and C show two prototypes of beam splitters 
designed by different approaches. In the first example, 
Piggott et al. demonstrated multichannel wavelength split-
ting [75]. The specifications of this design task are the con-
version efficiencies between the input and output modes 
at discrete wavelengths, and two different methods were 
employed sequentially to find the solution. At the starting 
point, an “objective first” strategy was adopted to take an 
initial guess of the structure [79], which first constrained 
the mode profiles to satisfy the target performance but 
allowed Maxwell’s equations to be violated and then 
minimized this violation with an optimization algorithm. 
Next, for fine tuning of the structure, the steepest (gradi-
ent) descent method was applied by computing the gradi-
ent of the performance metric to find its local minimum 
[80]. This process was under the constraint of Maxwell’s 
equations while the permittivity was still allowed to vary 
continuously. The resulting layout was a complex gradient-
index pattern with the refractive index ranging from 1 (nair) 
to 3.49 (nSi). After converting this pattern to a binary level 
set representation [81], by which the material at each posi-
tion can only be air or silicon, the design was optimized 
again using the steepest descent method for performance 
and bandwidth optimization around 1300 and 1550  nm 
wavelengths. The whole design process took ~36 h using 
a graphics processing unit (GPU) accelerated FDTD solver. 
The final design is shown in Figure 2B. As can be seen, 
the functional region contains voids of irregular shapes, 
but waveguide modes at the target wavelengths are routed 
to different output ports with low insertion losses as they 
propagate through the device.
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Another design of nanophotonic beam splitters was 
showcased by Shen et al. [76]. In this example, an unpolar-
ized input mode is split to transverse magnetic (TM) and 
transverse electric (TE) components that exit the device 
at two different output ports. The design was based on a 
direct binary search (DBS) algorithm, which differs from 
the gradient-based methods. In brief, an area of 2.4 × 2.4 
μm2 was first discretized into 20 × 20 pixels. Each pixel has 
a size of 120 × 120 nm2 and represents a silicon pillar or a 
void, denoted by state 1 or 0. The thickness of the device 
was also discretized with a step of 10 nm. A figure of merit 
(FOM) for optimization was then defined as the average 
transmission efficiency for the TM and TE modes. Follow-
ing a random sequence, the state of the pixels was switched 
and FOM was calculated. If FOM was improved after a 
switch, that pixel would retain the new state; otherwise it 
kept the original value. After all the pixels were addressed, 
a similar optimization was applied to the device thick-
ness by changing its value to the adjacent states (±10 nm). 
Walking through the 400 pixels and making a slight adjust-
ment to the device thickness completed one iteration. The 
optimization was terminated when the improvement of 

FOM was smaller than a threshold after an iteration or 
the maximum iteration number was reached, which took 
~140  h. As a non-gradient approach, the DBS is compu-
tationally intensive and becomes less efficient when the 
number of design variables increases [73]. To maintain the 
computation time within an acceptable range, paralleliz-
ing the algorithm and using larger clusters of processors 
would be necessary [82]. Figure 2C reports the design and 
experimental and simulation results, showing reasonably 
good agreement. On-chip devices form a class of applica-
tions suitable for inverse design. Besides beam splitters, 
optical diodes that perform asymmetric spatial mode con-
version [70, 71] (Figure 2D) and reflectors [77] (Figure 2E) 
have also been demonstrated using different algorithms.

Flat optics is another class of applications powered 
by optimization methods [7, 8]. Having resonant ele-
ments arranged at an interface or in a few layers to carry 
out functionalities, metasurfaces and metalenses contain 
many variables to be carefully determined in the design 
process, and the problem could be larger scale if the struc-
ture is aperiodic. For the design of dielectric metasurfaces, 
topology optimization could be a well-suited option [25]. 

Figure 2: Demonstrations of on-chip devices based on inverse design.
(A) A photonic crystal waveguide Z-bend showing exceptional transmission. Panels in zigzag order: Schematic of optimization, simulated 
wave propagation, SEM image of the fabricated Z-bend, and comparison of bend losses between optimized (thick grey/red for measurement/
simulation) and unoptimized (thin black) structures. (B) A two-channel wavelength splitter. Left: SEM image. Middle: Simulated field patterns 
for 1300 (blue) and 1550 nm (red) wavelengths. Fields are superimposed and color coded for illustration. Right: Measured transmission 
spectra. (C) A nanophotonic mode-converting polarization beam splitter. Top: SEM micrograph (left panel) and comparison of measured (solid 
lines) and simulated (dashed lines) transmission of the fabricated device. Bottom: Simulated field intensity distributions for TE and TM modes 
at 1550 nm. (D) Simulated magnetic field distributions in an optical diode when the excitation is on the left (left panel) and right (right panel), 
respectively. (E) SEM image of a photonic reflector, as part of an on-chip Fabry-Pérot cavity. (A) Is reprinted with permission from Ref. [74], The 
Optical Society (OSA); (B) is reprinted from Refs. [11] and [75] by permission from Springer Nature; (C) is adapted from Ref. [76] by permission 
from Springer Nature; (D) is reprinted from Ref. [71] with permission (CC BY 4.0); (E) is reprinted from [77] with permission.
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Starting from a random, continuous refractive index dis-
tribution bounded by the indices of air and the dielectric 
(nd), structures satisfying the desired performance but 
with binary indices 1 and nd can be achieved by using gra-
dient-based optimization algorithms. Sell et  al. reported 
an approach for designing periodic silicon metasurfaces 
with multiwavelength functionalities [83–86]. When the 
target was set to deflect light of discrete wavelengths to 
different diffraction orders, an FOM involving all the dif-
fraction efficiencies was defined for optimization. By using 
an adjoint-based method [87], i.e. solving the forward dif-
fraction problem and an adjoint problem that reverses the 
incidence to the target diffraction order directions as one 

iteration, the gradient of FOM can be calculated, based on 
which the refractive indices at each point received a small 
adjustment towards nair or nSi. The iteration continued 
until a binary profile was obtained, as shown in Figure 3A. 
Similar procedures can be used to tackle aperiodic and 
multilayer structures and to achieve different functionali-
ties, such as wavefront manipulation, polarization control, 
and beam shaping. Although considerable efforts have 
been devoted to alleviating the aberration in metasurfaces, 
success was only attained in eliminating the chromatic 
aberration [89]. The suppression of angular and off-axis 
aberrations in single-layer metasurfaces is fundamentally 
impossible, whereas the design of multilayer structures 

Figure 3: Metasurface inverse design using topology optimization.
(A) A five-wavelength beam splitter with the SEM image (left) and experimental (middle) and theoretical (right) diffraction efficiencies. Inset: 
Correlation between incidence wavelengths and deflection angles. (B) Design of a multilayer focusing metalens with angular aberration 
correction. Rectangles in black denote silicon resonators, and the grey background is alumina. (C) Simulated far-field intensity profiles 
for the structure in (B) at four angles of incidence follow the identical diffraction limit. Intensities are normalized to unity for comparison. 
(A) Is reprinted with permission from Ref. [83], Copyright 2018 John Wiley and Sons; (B) and (C) are adapted with permission from Ref. [88], 
Copyright 2018 American Physical Society.
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with an angle-dependent phase profile is practically chal-
lenging for traditional approaches. Taking advantage of 
topology optimization, Lin et  al. designed a two-dimen-
sional (2D) metalens that is free of angular aberration [88]. 
Figure 3B depicts the layout, which is symmetric but ape-
riodic, comprising five layers of silicon gratings embedded 
in an alumina background. FDTD simulations revealed 
that at the three target off-axis angles of incidence, light 

was all focused on the focal plane following the identical 
diffraction limit, as shown in Figure 3C.

Evolutionary algorithms are also widely used in metas-
urface design. The general strategy is to maximize a fitness 
function by repeatedly evolving a population of candidate 
solutions with sequential application of selection, crosso-
ver, mutation, etc. One possible framework consisting of 
four steps is illustrated in Figure 4A, which was adapted by 

Figure 4: Nanophotonic devices based on evolutionary design and optimization.
(A) Illustration of procedures of evolutionary design. (B) The SEM image (left) of a metasurface that can generate five focal points (right) 
arranged in a T shape. (C) A simplified model of optimized matrix nanoantennas for improving the near-field intensity enhancement. 
(D) SEM images of optimized silicon nanoantennas for polarization-encoded color display. The associated wavelengths denote the 
resonances for y-polarized incidence, while for x polarization, the resonance is targeted at 550 nm. (E) Measured scattering spectra for  
x- (top) and y-polarized (bottom) incidence. (F) Optimization history of the averaged absorption enhancement in a quasi-random light-
trapping structure. Insets show the generated patterns at selected optimization steps. (A) and (B) are reprinted from Ref. [90] with 
permission; (C) is reprinted from Ref. [91] with permission, Copyright 2018 American Physical Society; (D) and (E) are adapted from Ref. [92] 
by permission from Springer Nature; (F) is reprinted from Ref. [93] with permission, Copyright 2018 National Academy of Sciences.
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Huntington et al. for optimizing a lattice of circular holes 
in a metal film to achieve unique focal properties [90]. The 
design began with the generation of the initial population 
(step 0), a group of 600 randomly created binary patterns. 
Because the lattice consists of 33 × 33 holes, each denoted 
as 1/0 when the hole is open/closed, in total there are 21089 
possible arrangements. The field distribution for an arbi-
trary profile can be calculated by adding up the pre-stored 
complex fields from each individual hole. Compared with 
simulating the entire structure, this scheme significantly 
increases the efficiency. For a specification of the focal 
behavior, a fitness function can be defined accordingly, 
which is maximized when the far-field intensity satisfies 
the target functionality [94]. In step 1, each member in the 
initial population was evaluated by the fitness function. 
The population was then sorted in step 2 by fitness, and the 
best-fit individuals were selected in step 3 to create a new 
generation of the population through a combination of 
crossover and mutation. The design cycle continued until 
a convergence condition was reached (step 4). In Ref. [90], 
after optimizing the parameters of the algorithm, e.g. the 
population size and mutation rate, a specified design task 
can be finished in ~210 generations within 30 min. But in 
general, since the optical properties of each individual 
structure is simulated rather than pre-stored, the design 
would take a much longer time. In fact, the high computa-
tional cost for large-scale design is an important limitation 
of evolutionary methods. Figure 4B shows a lattice which 
exhibits five focal points arranged in a T shape. In addition 
to the 1/0  state, the holes were further encoded by their 
sizes. Although the same pattern can be produced with a 
fixed hole size, the design with three different hole sizes 
improved the diffraction efficiency from 55% to ~74%. Not 
only the far-field patterns but also the near-field intensity 
can be engineered using this technique. Fitchtner et  al. 
studied the near-field enhancement in a checkerboard-
type structure [91], which was optimized using an evo-
lutionary algorithm. The results led to a novel “matrix 
nanoantenna” structure that can provide a 2-fold near-field 
enhancement compared with a dipole antenna. Analysis of 
a reduced model in Figure 4C, which retains the important 
structural features of the fittest design, revealed that the 
enhancement is caused by the complex interplay between 
a fundamental split-ring mode and a dipole mode in the 
two arms. Moreover, it is shown that by connecting nano-
bars to the ends of an SRR, the fundamental resonance 
can be shifted from near infrared into the visible regime. 
Tuning the resonances of nanoantennas further enables 
color generation [95]. With the assistance of evolutionary 
algorithms combined with an electrodynamic solver based 
on the Green’s dyadic function, Wiecha et al. demonstrated 

polarization-dependent color pixels [92]. Figure 4D shows 
the gallery of the designed silicon nanoantennas, which 
were optimized to have maximized scattering at 550  nm 
for incident polarization along the x axis and at various 
wavelengths for incident polarization along the y axis. 
Each pixel may have multiple elements, and interestingly, 
as the target wavelength increases, these elements tend to 
merge together. The polarization-filtered dark-field spectra 
and images for orthogonal polarizations are compared in 
Figure 4E, showing reasonable agreement with the simu-
lated results. The design methods can also be combined 
with fabrications. Lee et al. integrated the processing steps 
of wrinkle lithography with the concurrent design proce-
dure of quasi-random light-trapping nanostructures for 
absorption enhancement [93]. Specifically, the processing 
patterns were represented statistically by the Fourier spec-
tral density functions [96], which used only three variables 
to connect the structure and the optical property, making 
the problem solvable for a genetic algorithm. Figure 4F 
depicts the optimization history of the averaged absorp-
tion enhancement by the designed structures. After ~150 
iterations the search gradually converged, resulting in an 
enhancement of 4.7 over the weakly absorbing interval of 
amorphous silicon from 800 to 1200 nm.

The suppression of light scattering by an object is 
a topic of broad interest. In recent years, progress has 
been made with both forward design methods, such as 
transformation optics [97–101] and scattering cancella-
tion [102], and inverse design approaches [103]. Genetic 
algorithms are usually adopted for optimizing a multilayer 
particle or cylinder to achieve omnidirectional scattering 
reduction [104, 105], while topology optimization is more 
practically associated with designing bidirectional cloaks 
or resonators that can be realized by a low-index material 
[106–112], although in theory it can work for any imagi-
nable objective function [106, 113]. Figure 5 summarizes a 
few examples based on topology optimization. Since the 
design methodology does not differ much from the exam-
ples above, we will not proceed further to the details.

Lastly, we briefly outline a few other computational 
methods and applications. In addition to device design, 
optimization algorithms have been used to explore new 
physics. In the study of optical tweezers and optical 
manipulation [114–118], traditionally attention was paid 
to the optimization of particle geometry and multiplexed 
optical traps. Lee et al. applied constrained optimization 
[119], a derivative-free algorithm, together with a BEM 
solver to maximize the optical torque on a gold nano-
triangle [120] (Figure 6A). At the dipole and quadrupole 
resonance wavelengths of the particle, a large portion of 
2000 random initial illumination conditions resulted in 
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over 5-fold enhancement of optical torque per intensity, 
compared with that from a standard circularly polarized 
planewave incidence. The optimal design at the quad-
rupole resonance could even lead to a 20-fold improve-
ment, as revealed in Figure 6B. This result provides new 
insights into the optical manipulation of objects with 
structured light, and the computational framework can 
be generalized to opto-mechanical applications. Lin et al. 
demonstrated, based on topology optimization, that the 

third-order Dirac points formed by the accidental degen-
eracy of modes belonging to three different symmetry rep-
resentations can be realized in inverse-designed PhCs [121] 
(Figure 6C). Moreover, the third-order exceptional points 
can be created by introducing a small loss term, giving 
rise to strong modifications in the local density of states 
(LDOS) and potential connections to topological photon-
ics [124]. Topology optimization is not the only technique 
compatible with the binary representation of materials. 

Figure 5: Topology-optimized cloaks and concentrators.
(A) A 2D low-contrast all-dielectric cloak. Left: The dielectric layout for four symmetry lines. Inner circle denotes an ideal metallic cylinder. 
Middle: Numerical demonstration of the cloaking performance. Right: The scattering pattern of a bare cylinder. (B) A 2D unidirectional cloak 
with a low refractive index material (blue region, εr = 2) and the simulated scattering pattern. (C) Experimental realization of the design in 
(B) at microwaves. (D) Design of a 3D magnetic field concentrator (left) and the simulated magnetic field distribution (right). (A) and (B) are 
adapted from Refs. [106] and [107], respectively, with permission of American Institute of Physics (AIP); (C) is reprinted from Ref. [108] with 
permission of American Institute of Physics (AIP); (D) is reprinted from Ref. [110] with permission.
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Figure 6: Applications of computational methods beyond topology optimization and genetic algorithms.
(A) Inverse design of illumination patterns to maximize optical torques. (B) Optimized torque spectra and field distributions for three target 
wavelengths at 1028, 805, and 625 nm, respectively. (C) Inverse design of PhCs for enhancing spontaneous emission. Left: Dielectric layout 
of the design. Black regions correspond to a material with refractive index n = 2. Middle: LDOS profile at the third-order Dirac exceptional 
point. Right: LDOS spectra at the center of the unit cell. (D) A binary plasmonic structure (top) designed by simulated annealing algorithms 
to produce five focal points of SPPs. (E) A super-oscillatory lens designed by particle swarm optimization for subwavelength imaging. Top: 
SEM images of the fabricated lens (left) and a cluster of nanoholes in a metal film (right). Bottom: Images of the cluster by a conventional 
lens (left) and by the super-oscillatory lens (right). (A) and (B) are reprinted with permission from Ref. [120], The Optical Society (OSA); 
(C) is adapted with permission from Ref. [121], Copyright 2018 American Physical Society; (D) is adapted with permission from Ref. [122], The 
Optical Society (OSA); (E) is adapted from Ref. [123] by permission from Springer Nature.
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Other algorithms, such as simulated annealing and par-
ticle swarm optimization, have also been used in the opti-
mization of nanostructures. Simulated annealing mimics 
the process of heating and controlled cooling of a solid 
for recrystallization in metallurgy [39]. At each iteration 
of the search, the algorithm keeps every better solution 
and, by choosing a temperature-dependent acceptance 
function, allows with a slowly decreasing probability 
some worse solutions to stay in the pool. Therefore, this 
strategy largely avoids being trapped in local minima and 
statistically guarantees finding a good solution, but mean-
while, its efficiency is lower than gradient-based methods. 
Figure 6D shows the design of a binary plasmonic struc-
ture composed of pixelated grooves [122]. Complex inter-
ference patterns of surface plasmon polaritons (SPPs) can 
be generated, showing the potential as plasmonic cou-
plers. Particle swarm optimization works based on the 
movements of a population of candidate solutions (parti-
cles) in the search space. During optimization, the initially 
randomly distributed particles continue moving towards 
the then-current optimum particle in the swarm, until a 
certain termination criterion is reached [33]. Figure  6E 
reports the imaging of subwavelength holes by a binary 
super-oscillatory lens [122], which was fabricated on a 
100-nm-thick aluminum film on glass and mounted to a 
microscope lens. The structure creates a delicate balance 
of the interference of a large number of diffracted beams, 
ensuring the hotspot is very sensitive to the presence of 
small objects. In addition to imaging, other reported 
applications include field enhancement engineering [125], 
waveguide design [126], and color filters [127], etc.

3  �Nanophotonics enabled by deep 
learning

Deep learning, as a subfield of machine learning and AI, 
has attracted increasing attention due to its great success 
in computer vision [12] and speech recognition [13] and 
its astonishing progress in various applications such as 
strategy making [14]. Recently, owing to its extraordinary 
capability in finding solutions from an enormous para-
meter space, researchers have started using deep learn-
ing in drug discovery [19], materials design [16, 18, 128], 
microscopy and spectroscopy [129–134], and other phys-
ics-related domains [135–137]. Among all these attempts, 
nanophotonics turns out to be a unique field, because it 
not only benefits from deep learning for the inverse design 
of advanced devices and performance improvement of 
existing techniques but can also give feedback, providing 
platforms to implement deep learning algorithms that can 

operate at the speed of light and with low energy consump-
tion. In the following, we discuss how the field of nanopho-
tonics is actively interacting with the emerging technique 
of deep learning. Specifically, the recent advances in 
applying deep learning for nanophotonic design will be 
reviewed in this section, and the optical implementations 
of neural networks are left to the next section.

We start with a brief introduction on some basic con-
cepts about DNNs. Figure 7 illustrates the typical archi-
tecture of a DNN consisting of multiple processing layers, 
including an input layer at the bottom, an output layer on 
the top, and at least one hidden layer (but usually more) in 
between. Each circle in the diagram represents an artificial 
neuron, which is connected to other neurons in the neigh-
boring layers by different weight values subject to learning. 
The input and output layers both have a fixed number of 
neurons or units, determined by the size of the feeding data 
(for the input layer) and the task of the DNN (for the output 
layer). In nanophotonic applications, they could corre-
spond respectively to, e.g. the design parameters of a nano-
photonic structure and its optical properties or vice versa. 
The hidden layers establish a nonlinear mapping between 
the input and output via training, from which very abstract 
relationships can be discovered to make predictions on the 
optical properties of given nanostructures and determine 
the design parameters for the desired performance.

What lies at the very root of DNNs is the organiza-
tion of the neurons. Specifically, enabled by the use of the 
backpropagation algorithm, a unique feature of DNNs is 
that data can be transformed bidirectionally through the 
network between the input and output layers. Conduct-
ing deep learning is thus divided into two processes: the 
forward inference and the training based on backpropa-
gation, as sketched in Figure 7. In general, the computa-
tion of DNNs is achieved by matrix multiplications. In 
the forward inference, starting from the input layer, the 
neurons carrying input data form a vector X. Under full 
connectivity, each neuron xi in X is connected to each 
neuron yj in the first hidden layer, Y1, by a weight wij. An 
initial value zj = Σwij · xi is given as a weighted combination 
of the neuron values from the previous layer. It is then 
essential to apply a nonlinear activation function f to zj; its 
importance will be explained shortly later. Now the value 
of neurons in the next layer Y1 is rectified to yj = f(Σwij · xi) 
or simply Y1 = f(W · X), an expression of matrix multiplica-
tion. For the forward inference, each next layer Yl+1 is con-
nected to the previous layer Yl by a similar weight matrix, 
and this operation is repeated for all layers until arriving 
at the output layer YL for a network with L layers, which 
gives the first guess of the target tk.

Because the initial values of the weights wij are 
usually randomly chosen or at least not well suited for 
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the problem to be solved, this guess is very likely far away 
from the correct answer, giving a large error. The training 
process works in the reverse direction. Based on the error 

at each output neuron, a cost function C can be defined, 
which is minimized when the result of the forward infer-
ence, YL, is equal to the real answer. The gradient of the 

Figure 7: The architecture and learning process of a deep neural network comprising multiple layers.
The circles represent artificial neurons. In the shown case, neurons in the same layer do not interact, but each neuron is connected, with a 
unique weight wij, to every neuron in the adjacent layer(s), namely, the preceding and/or subsequent layers. Data transformation between 
adjacent layers is implemented by linear matrix multiplications of the weights and input vectors, followed by the application of a nonlinear 
function f (and sometimes an additive bias bj) at each neuron. Left: Forward inference in which data flow through the network from the 
input layer to the output layer. Right: Training with backpropagation, where every weight value is adjusted based on the error derivative to 
minimize the cost function. The forward inference, backpropagation, and weight update are repeatedly performed as data are continuously 
supplied, until the desired performance is obtained.
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cost function can be calculated by the partial derivative 
of the cost with respect to each weight variable, ∂C/∂wij. 
Using the chain rule of derivatives, this can be expressed 
by ∂C/∂wij = (∂zj/∂wij)(∂yj/∂zj)(∂C/∂yj). When calculating 
the final term for the weights connected to the output 
layer, it is simple as the cost is directly a function of the 
values at those neurons. When doing the same for previ-
ous layers, the derivative of the cost with respect to each 
neuron’s value is a weighted sum of multiple errors, 
because the neuron is connected by multiple routes to all 
the neurons in the output layer. Hence, the backpropaga-
tion is meant to efficiently calculate the partial derivatives 
and how the error propagates through each layer. Finally, 
each weight is adjusted by the partial derivative of the cost 
with respect to that weight, further scaled by a factor η 
called the learning rate, Δw = − η · ∂C/∂w. Sometimes a sto-
chastic factor is also included. This weight update is how 
the network learns. The process of feeding data in, calcu-
lating a prediction through the forward inference, calcu-
lating the cost by comparing it to the true values of that 
training data, and calculating the gradient of the cost and 
adjusting each weight value is repeated for many times. 
With a sufficiently large amount of training data, the per-
formance of the DNN can be continually improved.

While the basic principle of deep learning is sum-
marized above, the actual implementation of DNNs is 
much more complicated and contains many subtle prob-
lems, such as the choice of training data, the cost func-
tion, network depth, initial weights, the learning rate, 
etc. Since these detailed techniques are not among the 
focus of this article, interested readers may refer to some 
latest topical reviews or books, e.g. Ref. [138]. Before pro-
ceeding to the applications in nanophotonic design, two 
concepts that will appear in the later discussion deserve 
a glance. First, the nonlinear function f, or termed as acti-
vation function or transfer function, plays an important 
role in DNNs. Compared with linear functions, nonlinear-
ity allows a network to tackle more abstract representa-
tion and learn much faster with fewer neurons. Popular 
choices of the nonlinear function include the logistic 
functions, the hyperbolic tangents, the rectified linear 
units, etc. Second, the organization of neurons varies. 
Besides the fully connected network in Figure 7, another 
widely used architecture is the convolutional neural 
network (CNN). In such structures, data flow in the form 
of multiple planes, and it is a filter or kernel consisting of a 
small array of weights that connects the input and output 
planes. With this change, CNNs contain much fewer con-
nections than standard models with a similar depth and 
are thus easier to train, while their theoretical best perfor-
mance only decreases slightly [12]. This characteristic is 

highly desirable when processing high-dimensional data, 
such as images and videos.

Applying deep learning algorithms to the nano-
photonic inverse design introduces remarkable design 
flexibility that can go far beyond that of conventional 
methods based on an intuitive initial guess and many 
cycles of trial-and-error modeling, fabrication, and char-
acterization. It also enables, without recurrent efforts in 
conducting time-consuming simulations, fast prediction 
of complex optical properties of nanostructures with 
irregular shapes and intricate architectures. A bidirec-
tional DNN that can achieve both the design and charac-
terization of plasmonic metasurfaces was first reported by 
Malkiel and coworkers [20]. For the implementation, two 
standard DNNs were used to perform the inverse design 
and spectra prediction tasks for arrays of “H”-shaped gold 
nanostructures. Instead of training two networks sepa-
rately and composing them afterwards, it is shown that 
combining the networks during training is more effective 
and helps to avoid unstable processing. The full structure 
of the combined network is shown in Figure 8A. A geom-
etry-predicting network (GPN) is used to solve the inverse 
problem, for which the training data comprise two spectra 
for orthogonal linear polarization excitations and the dis-
persive material properties. These three groups of data 
were fed separately and in parallel into three DNNs before 
they join a larger fully connected DNN. This architec-
ture allows better representation of each data group and 
results in better performance if the depths of the networks 
are properly selected. The output of GPN includes eight 
design parameters, corresponding to the length, width, 
orientation, and existence of the five elements (four arms 
and one connecting bar) of a general “H”-shaped particle. 
The second part works on top of the GPN and functions 
as a spectrum-predicting network (SPN), which receives 
the predicted design parameters, material properties, 
and a polarization indicator as the input and returns the 
predicted transmission spectra as the outputs. Due to the 
two-phase structure of the network, backpropagation 
is optimized between the GPN and SPN for stability and 
efficiency. With a training dataset containing over 16,500 
geometries simulated by an FEM solver, the desired per-
formance was achieved. Note that although the genera-
tion of training data is still a time-consuming process, the 
training takes only ~2 h to get the best results. More impor-
tantly, these efforts are nonrecurrent. Once the training is 
complete, a query to the DNN about either the design (for 
a pair of given spectra) or the spectrum prediction (for a 
given geometry) can be solved in a few milliseconds. In 
contrast, the same query to an evolutionary algorithm 
or other traditional optimization methods would take 
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much longer time to search the entire parameter space. 
Figure 8B shows the representative results for two testing 
samples, which were fabricated, measured, and composed 
of geometries not used in training. Excellent agreement 
was achieved between the retrieved parameters and real 
dimensions measured by scanning electron microscopy 
(SEM), and the spectra from measurements, predictions, 
and simulations based on retrieved geometries also show 
fairly good overlaps.

The above framework optimizes a few parameters 
that describe a certain form of geometry. While it shows 
the potential as a powerful tool of inverse design, in 
many circumstances varying the geometry within a single 
class of topology is insufficient to generate the intended 
complex optical responses. Liu et  al. proposed an alter-
native method to explore the enormous design space by 
employing a generative model [22], as shown in Figure 8C. 
The full architecture is constituted by three parts, namely, 
the generator, the simulator, and the critic, all being CNNs. 

Specifically, the generator and critic together function as 
a generative adversarial network (GAN), which, unlike the 
previous case relying on paired input-output training data, 
is an unsupervised learning system [139]. In practice, the 
simulator was pre-trained with 6500 full-wave FEM simu-
lations for a broad variety of shapes of gold nanoparticles. 
After training, its weights were fixed, and the transmit-
tance spectra of any input patterns would be approximated 
by the simulator instead of being computed by full-wave 
simulations. The function of the generator is to create unit 
cell patterns of the metasurface for input spectra T such 
that when the generated patterns are fed to the simula-
tor, the approximated spectra T′ would largely replicate 
the original inputs T. However, if there is no constraint on 
the training, the generated patterns can be arbitrary and 
include numerous unrealistic results. On the other hand, 
if the true patterns corresponding to T are directly used 
to determine the cost function, the model reduces to the 
supervised case and the pattern generation becomes a 

Figure 8: Inverse design of plasmonic metasurfaces via deep learning.
(A) A DNN for design and characterization of metasurfaces. The network comprises a layered GPN (left) to solve the inverse design problem 
and an SPN (right) to predict the spectra based on retrieved design parameters. (B) Demonstration of design retrieval and spectra prediction 
based on (A). The building block is a gold nanostructure with its geometry represented by a general “H” form. (C) Architecture of a generative 
network composed of a generator, a pre-trained simulator, and a critic. In the training phase, by receiving spectra T and the corresponding 
patterns X, respectively, the generator and the critic learn jointly. Valid patterns are smoothened to binary maps and stored as candidates 
for metasurface design. (D) Original (left) and generated pattern (right) and their transmittance spectra based on a training dataset of 
elliptical nanoparticles. (E) Original (left) and retrieved pattern (right) and their transmittance spectra based on an incomplete dataset of 
handwritten digits. The network generated a modified “3” to best replicate the spectra for pattern “5”, which was removed intentionally 
from the training data. (A) and (B) are reprinted from Ref. [20] with permission (CC BY 4.0); (C)–(E) are reprinted with permission from Ref. 
[22], Copyright 2018 American Chemical Society.
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deterministic problem. Therefore, the critic plays a key role 
in the GAN. In the training process, it receives as inputs 
both the original patterns resulting in T and the generated 
patterns in the form of images. The critic compares the two 
sets of images and restricts the generator to create patterns 
that share common features with the original structures 
but are not identical to them. Figure 8D and E summarize 
two examples to show the performance of the network, 
which was trained with several classes of geometries, such 
as circles, arcs, ellipses, crosses, handwritten digits, and so 
forth. In Figure 8D, the network responded correctly to the 
query of replicating the transmittance spectra of an ellipti-
cal nanoparticle array. The generated pattern and result-
ant spectra (right panel) only exhibit slight deviations 
compared with the inputs (left panel). This retrieval can 
be achieved not only when the critic was fed with a single 
class of geometry but also for a mixed training dataset 
that contains all the classes, meaning that the GAN can 
identify the correct topology and conduct inverse design 
effectively. In Figure 8E, after the critic was trained with 
an incomplete set of handwritten digits, the network was 
asked to replicate the spectra of a metasurface consisting 
of the missing digit “5”. Very interestingly, the generated 
pattern was a modified “3”, which departs from the ground 
truth but also contains some similar geometric properties 
to reproduce most of the spectral features.

The fact that DNNs can learn complex functions from 
abstract data representations provides unprecedented 
opportunities to the nanophotonic inverse design. In many 
applications, the relations between desired functionalities 
and the design parameters are very intricate, and physical 
insights and intuitive reasoning may not help to guide the 
design process. One example is the generation of optical 
chiral fields. Chirality is a structural property of objects. 
An object is chiral if it cannot be superimposed to its 
mirror image. Due to its universal existence in nature, chi-
rality has aroused enormous research interests [140–144]. 
From a nanophotonic point of view, designing chiral nano-
structures that respond to chiral light (usually left/right 
circularly polarized (LCP/RCP) light) differently is of both 
fundamental and application-wise importance. However, 
due to the complex, unrevealed underlying mechanism, 
despite some requirements on symmetry being formulated 
to judge whether a structure is chiral or not [145, 146], there 
is no general guideline that can be referred to if one wants 
to design a structure for a given chiral response or how 
this response will evolve when the structure transforms. 
Taking advantage of deep learning, Ma and coworkers 
demonstrated a purpose-designed learning architecture 
for implementing on-demand design of three-dimen-
sional (3D) chiral metamaterials [21]. Figure 9A illustrates 

the general form of the unit cell, which consists of two 
layers of gold SRRs atop an optically thick gold reflec-
tor. The two SRRs are sized l1 and l2, respectively, and are 
twisted for an angle α. These parameters together with 
the spacer thicknesses t1 and t2 define the structure of the 
chiral metamaterial. Upon illumination of LCP and RCP 
light, the metamaterial absorbs (or equivalently reflects) 
the incidence differently, resulting in circular dichroism 
(CD) signals. Like in the previous cases, training a DNN 
to establish nonlinear mappings between the design 
parameters and spectra is possible. And indeed, when 
the reflection spectra were fed into a bidirectional DNN, 
denoted as the primary network (PN) in Figure 9B, both 
spectra prediction and design retrieval can be achieved 
after learning from 25,000  simulated samples. Note that 
compared with the fully connected DNN used in Ref. [20], 
here a tensor module is introduced to account for the size 
mismatch between the low-dimensional input vector of 
five design parameters and the high-dimensional output 
of spectra [147]. In Figure 9C (top panel), the dashed and 
solid curves show the simulated and predicted spectra, 
respectively. However, while the two sets of spectra coin-
cide well over most of the frequency range, obvious dis-
crepancy occurs at the steep resonance valley near 60 THz 
for the co-polarization reflection of RCP. The reason of this 
degradation is that for each neuron in the output layer, 
the probability distribution generated by the nonlinear 
function is centered at its off-resonance value. Sharp reso-
nance features deviating from the mean value is thus dif-
ficult to predict with high accuracy. A feasible way to fix 
this issue is to combine the PN with an auxiliary network 
(AN) that associates the design parameters directly to the 
CD signal (Figure 9B and C, lower panels). Because CD is 
not independent of the reflections, including CD spectrum 
in the dataset of PN will not improve the learning perfor-
mance. When the predicted CD exceeds a threshold value, 
the AN triggers a fine-tuning network in the combiner to 
locally refine the reflection spectra near that frequency. 
The AN-corrected reflections are denoted by dotted lines 
in Figure 9C, showing excellent agreement with the simu-
lated results. This combined network enables on-demand 
inverse design of 3D chiral metamaterials and discovery 
of some interesting, counterintuitive phenomena. For 
instance, in Figure 9D, chiral metamaterials with 10° and 
170° twisting angles exhibit strong chiral responses at 60 
THz when the SRRs are in proper sizes; while if follow-
ing the previous argument of symmetry, they are close 
to the achiral structures where α = 0° or 180° and are not 
expected to generate strong CD.

Another example of employing DNNs for inverse 
design without intuitive guidelines is reported by Pilozzi 
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et al. In Ref. [148], they applied a deep learning algorithm to 
solve the inverse problem for topological photonics. Stem-
ming from the photonic analogue of quantum anomalous 
Hall effect in electronics, topological photonics studies the 
creation of interfacial phonon transport or edge states that 
are protected from scattering [124]. The realization of such 
systems with nontrivial topological properties usually 
requires using magnetism, time domain modulations, 
or optical bianisotropy, but none of them can be easily 

designed for an intended edge state at a given frequency, 
even in the simplest one-dimensional systems. Figure 10A 
illustrates the dielectric function profile of a multilayer 
structure with Harper modulation [149, 150], from which 
synthetic magnetic fields can occur. The existence of edge 
states and their dispersion relations can be determined 
by assigning proper boundary conditions and solving the 
eigenvectors of the transfer matrix. The band diagram for a 
chosen modulation profile is shown in Figure 10B, where 

Figure 9: On-demand design of chiral metamaterials enabled by deep learning.
(A) The unit cell of a chiral metamaterial consisting of two layers of gold SRRs on top of a reflective mirror. Two SRRs are twisted by an angle 
α, which breaks the mirror symmetry of the system and determines the chiral response together with other design parameters, including 
the sizes of SRRs and the thicknesses of the spacing layers. (B) A combined architecture consisting of two bidirectional DNNs. The primary 
network (top) connects design parameters and reflection spectra, and the AN (bottom) creates mappings between design parameters and 
CD with higher accuracy. Data are allowed to flow between PN and AN via combiners to refine resonance features in all the spectra. (C) 
Top: Comparison of reflection spectra obtained by simulations (dashed lines), by PN alone (solid lines), and by the combined system in (B) 
(dotted lines). Bottom: Comparison of simulated CD and AN predicted CD. (D) Evolution of CD at 60 THz for different combinations of SRR 
sizes and selected twisting angles. Figures are adapted with permission from Ref. [21]. Copyright 2018 American Chemical Society.
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the green and orange strips correspond to the band gaps, 
and edge states, indicated by the white crosses, exist only 
in the gaps where a complex function Q changes sign. Pro-
vided a modulation frequency and materials A and B, the 
search for layer thickness ξ and the phase χ of Harper mod-
ulation for an edge state at frequency ωt cannot be solved 
analytically but can be addressed by two DNNs. Because of 
the folding and multivalued branches of a Brillouin zone, 
additional categorical features were included in the dataset 
to label the different modes and different trends of the iso-
frequency surfaces. Unphysical solutions to the inverse 
problem were ruled out by making a self-consistency check 
between the predicted frequency and the ground truth in 
the training dataset. Figure 10C and D report the solutions 

from the direct and inverse DNNs, respectively, showing 
good agreement with the training set (colored curves).

A keystone of inverse design via deep learning, as 
a data-driven method, is the sufficiently large training 
dataset, which is usually obtained by numerical simula-
tions. For most of the applications above, thousands of 
simulations are conducted for weeks to give a good rep-
resentation of the input space. To this extent, applica-
tions and geometries that are consistent with analytical 
methods provide a suitable playground for efficient data 
generation. Figure 11A and B exemplify this by consid-
ering the scattering problem of a SiO2/TiO2 multilayer 
spherical particle [151]. With analytical solutions derived 
from the transfer matrix method, 50,000  samples were 

Figure 10: Solving the inverse problem in topological photonics using DNNs.
(A) Dielectric function profile of a multiplayer structure with Harper modulation. Layers with material A are stacked with spatial modulation 
along the z axis in a homogeneous bulk material B. (B) The band diagram of the structure in (A). Orange and green ribbons represent band gaps. 
Edge states are denoted by regions with crosses, which exist only in the band gaps where a complex quantity Q changes sign. White and purple 
regions correspond to Q > 0 and Q < 0, respectively. (C) The band diagram predicted by the direct DNN. (D) The modulation diagram retrieved by 
the inverse DNN. In (C) and (D), colored curves represent the training dataset. Figures are adapted from Ref. [148] with permission (CC BY 4.0).
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generated for different combinations of shell thickness. A 
fully connected DNN was used to solve the inverse design 
task. As can be seen in Figure 11A, for an arbitrarily chosen 
sample spectrum from the test set (blue curve), the DNN 
successfully captures all the spectral features with only 
moderate deviations in amplitude at a few peaks/valleys 
(red dotted curve). In contrast, when a nonlinear optimi-
zation based on the interior-point method was employed 
to solve the same problem, much larger inconsistency is 
observed (black dashed curve). In fact, as the number of 
design parameters increases, optimization methods tend 
to become stuck in the local minima instead of the global 
ones, while DNNs are not affected. Moreover, DNNs can 
be easily adapted to fit different design requirements. 
For example, by using a different cost function, a SiO2/
silver multilayer particle showing broadband scatter-
ing within the desired wavelength range was found from 
the enormous possible candidates (Figure 11B). A similar 
procedure has also been used to study transmission of 
multilayer thin films, where hundreds of thousands of 

samples were generated for training [152]. Since for such 
non-resonant structures there is a high likelihood that dif-
ferent configurations can result in nearly identical optical 
responses, a tandem network was proposed to overcome 
the non-uniqueness issue. As shown in Figure 11C, a pre-
trained network solving the direct problem was connected 
via an intermediate layer M to the original DNN. This 
architecture works in a similar way to the bidirectional 
networks, which applies additional constraints to the 
learning process. The modified network gives reasonable 
designs even when asked to fit some unrealistic spectra 
as in Figure 11D. More complex functions, such as achiev-
ing phase delays at multiple wavelengths, can be realized 
by using structured thin films (Figure 11E) and modifying 
the network structure accordingly, while generating a new 
dataset is not a high cost.

Another aspect of the considerations about data is 
the volume. So far, the applications of deep learning in 
nanophotonics are limited to establishing the mappings 
between the design parameters and the optical responses 

Figure 11: Inverse design of multilayer structures via deep learning.
(A) A DNN retrieves the layer thicknesses of a multilayer particle based on its scattering spectrum, showing much higher accuracy than the 
nonlinear optimization method. The main figure compares the scattering spectra by simulation (blue), optimization (black), and prediction 
of DNN (red). Comparison between the ground truth and retrieved design parameters are given in the legend. (B) Inverse design of multilayer 
particles for broadband scattering in a given wavelength range. (C) A tandem network for designing multilayer thin films. A pretrained 
forward modeling network is connected to the inverse design network to avoid non-uniqueness issues. (D) Performance of the tandem 
network in fitting a Gaussian profile in the frequency domain. (E) Structured multiplayer thin films for modulating the transmission phase 
delay. (A) and (B) are reprinted from Ref. [151] with permission (CC BY-NC); (C)–(E) are reprinted with permission from Ref. [152], Copyright 
2018 American Chemical Society.
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given by spectra. The distributions of electric and magnetic 
fields and their derived quantities in the 2D or 3D space are 
also of great interest. However, using 2D or 3D field distri-
butions as datasets is not practical. On the one hand, this 
leads to huge amounts of data that are unaffordable for 
storage and training, especially in nanophotonics where 
ensuring high spatial resolutions is a basic need. On the 
other hand, how the feature representation in 2D and 3D 
data can be effectively utilized is largely unexplored. Barth 
and Becker proposed an interesting technique based on 
a machine learning algorithm, though not deep learning, 

for the classification of the photonic modes in a PhC [153] 
(Figure 12A). This task is aimed at a type of application dif-
ferent from inverse design. Taking sensing, for example, the 
3D field distributions associated with nanostructures need 
to be evaluated by some criteria and optimized accordingly 
in order to facilitate the light-molecule interactions and 
maximize the performance. However, the analysis of field 
distributions is difficult, usually solved by visualizations 
and processing the full set of 3D data. Taking advantage 
of an algorithm based on Gaussian mixture method [154], 
Ref. [153] showcased that the clustering model can reduce 

Figure 12: Machine-learning-based classification for field distributions of photonic modes.
(A) The unit cell of a silicon PhC on glass, in which circular holes form a hexagonal lattice. When illuminated by external light from the top, leaky 
modes are excited, which exhibit strong near fields boosting the emission of the nearby emitters, such as quantum dots. Rectangles in color 
denote the symmetry planes used for exporting field data. (B) Comparison of the simulated band diagram (left) and clustering results (right) 
when the sample is oriented in the Γ-K configuration and irradiated by a TE-polarized plane wave. Left: The diagram of volume-averaged electric 
field energy enhancement. Right: The classification map depicted by blending the color-coded silhouette coefficient of each mode with a black 
background. (C) Top view of electric field energy plots for the eight prototypes found in the clustering, with three of them associated with leaky 
modes exhibiting strong near fields. Mode A: plateau mode; Mode B: flank mode; Mode C: hole mode. Modes are termed based on the location 
of the field enhancements. (D) 3D semi-artistic plots of the interactions between leaky modes and randomly distributed quantum dots, which 
emit light with an intensity proportional to local field energy density. Figures are adapted from Ref. [153] with permission (CC BY 4.0).
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the 3D field distributions to a finite number of distribution 
prototypes, which allows the identification of character-
istic photonic modes. Figure 12B compares the band dia-
grams of a PhC obtained by two methods: The left panel is 
calculated by an integration of electric field energy density 
over the volume within the hole and a thin layer above the 
PhC, while the right panel depicts the classification map of 
field distributions on the three symmetry planes marked 
in Figure 12A. A fairly good match is observed, which con-
firms the validity of the procedure. Moreover, based on 
the clustering results, the field distribution prototypes can 
be obtained. As shown in Figure 12C, by inspecting the 
field distribution of each cluster, leaky modes that result 
in strong near-fields can be distinguished from the radia-
tive modes. These results were further validated by finite 
element simulations in Figure 12D, where the illumination 
conditions were determined using the silhouette coef-
ficients for classification [155]. Therefore, with a lower 
dimensional dataset, the proposed technique provides an 
alternative approach to extracting information from 3D 
field distributions that may not be accessible via visualiza-
tion-based analysis.

4  �Deep learning on nanophotonic 
platforms

The arrival of the era of big data has rendered the speed, 
energy consumption, and information density of com-
puting the key considerations in hardware development. 
However, after decades of continuous improvements fol-
lowing Moore’s law, electronics started facing bottlenecks 
on these aspects, which are physically fundamental and 
can no longer be resolved by scaling. Integrated photonic 
circuits are considered promising candidates to over-
come the above obstacles, because of the higher speed 
and energy efficiency associated with photons. On the 
other hand, traditional electronic components such as the 
central processing units are not well suited to serve the 
emerging techniques in AI. New hardware architectures 
aimed at accelerating AI and deep learning are also in a 
pressing need. Within the domain of electronics, GPUs, 
vision processing units, tensor processing units [156], 
TrueNorth [157], and other integrated chips [158] have 
been developed and showed great potential in practical 
applications. Meanwhile, hybrid opto-electronic systems 
for implementing spike processing [159, 160], neuromor-
phic computing, and reservoir computing have also been 
demonstrated, and progress is being made towards their 
photonic realization. Some timely reviews have given 

comprehensive discussions on these topics [26, 28, 30]. 
In this section we keep our focus on the all-optical imple-
mentation of DNNs.

While photonic circuits in general operate at higher 
speeds and with higher energy efficiencies compared 
with their electronic counterparts, implementing DNNs 
and computing on photonic platforms offers a few advan-
tages in this specific application [23, 161, 162]. First, as 
discussed in the previous section, the computation of 
DNNs is mostly achieved by matrix multiplications. In 
nanophotonic circuits, linear matrix operations can be 
performed very fast – almost at the speed of light – and in 
parallel and efficiently due to the non-interacting nature 
of photons. Second, the nonlinear functions in the DNNs 
can be realized by optical nonlinearities in photonic cir-
cuits, such as saturable absorbers or amplifiers. Third, for 
a given photonic DNN, after training, the whole system 
is passive and consumes no power. Last, it is possible to 
conduct training of photonic DNNs by an optical means. 
This could significantly accelerate the learning process 
and further reduce power consumption.

One of the earliest demonstrations of photonic DNNs 
was reported by Shen et  al. [23], where vowel recogni-
tion was achieved showing comparable performance to a 
64-bit electronic computer. To implement the full map of a 
DNN after training, each layer of the network is composed 
of an optical interference unit (OIU) to carry out the linear 
matrix multiplication and an optical nonlinearity unit 
(ONU) that acts as the nonlinear activation. Four differ-
ent vowel phonemes spoken by 90 different people were 
used to train and test the circuit, which were first preproc-
essed on a computer and then fed into the nanophotonic 
DNN as amplitude-encoded optical pulses to generate 
outputs, as shown in Figure 13A. The physical realization 
of the network in a nanophotonic circuit is not as straight
forward as it appears in the schematic. Because after train-
ing the weights may end up with an arbitrary distribution, 
the design of OIUs needs to tackle the problem of how 
the propagation of optical pulses through the unit can 
be equivalent to a multiplication by an arbitrary matrix. 
Fortunately, a real-valued matrix M can be expressed by 
M = UΣV† via singular value decomposition [164], with U 
and V† denoting two unitary matrices and Σ a diagonal 
matrix. In nanophotonic circuits, a unitary matrix can be 
implemented with beam splitters and phase shifters [161, 
165], and a diagonal matrix can be realized by using optical 
attenuators or amplifiers [166, 167]. Therefore, a proper 
arrangement of these optical components is capable of 
performing matrix multiplications. Figure 13B shows the 
optical micrograph of an OIU fabricated on a program-
mable nanophotonic processor. The unit consists of 56 
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Mach-Zehnder interferometers (MZIs) with each of them 
containing two phase shifters and a directional coupler 
to achieve desired functionalities via programming. The 
red- and blue-highlighted meshes denote the components 
that perform the unitary and diagonal matrix multiplica-
tions, respectively. Input optical pulses propagate through 
the unit, producing the correct interference patterns at the 
output. A similar scheme was adopted for implementing 
a different processor architecture for quantum transport 
simulations [168]. In Ref. [23], instead of physical realiza-
tion, the nonlinear activation was simulated on a computer 
as saturable absorbers. Whether real nonlinear optical 
elements can work equally well is still an open question to 
be addressed. Figure 13C compares the correlation matri-
ces of a bilayer nanophotonic DNN and a computer for the 
vowel recognition task. The nanophotonic DNN shows a 
correctness of 76.7%, lower than but still comparable to 
the result of 91.7% from the electronic processor. Larger 

error from the nanophotonic prototype turns out to come 
from the photodetection noise, limited phase encoding 
resolution, and thermal crosstalk between phase shifters. 
Nevertheless, all these error sources can be relieved by 
different strategies in future implementations.

The above nanophotonic DNN still relies on regular 
computers at the training phase. This makes the whole 
process inefficient. An on-chip training scheme based on 
forward inference was proposed, which in principle could 
fit complex network architectures such as CNNs and recur-
rent neural networks (RNNs) where the effective number of 
parameters is substantially more than the distinct number 
of parameters. However, conducting such training requires 
repeatedly tuning every MZI in the circuit and is not effi-
cient when the chip is scaled up. Hughes et al. developed 
an alternative protocol in which the on-chip training is 
accomplished only by in situ intensity measurements [163]. 
When a DNN is implemented by a nanophotonic platform 

Figure 13: Nanophotonic DNNs.
(A) The architecture of a nanophotonic neural network for vowel recognition. Each box in grey corresponds to an OIU that computes matrix 
multiplication, followed by an ONU connecting it to the next layer. (B) Optical micrograph of the OIU used in the experiments. The unit 
comprises 56 programmable MZIs, with the red/blue mesh highlighting the functional part implementing a multiplication by a 4 × 4 
unitary/diagonal matrix. Inset: Layout of the MZIs composed of two phase shifters and a directional coupler. (C) Confusion matrix of the 
nanophotonic circuit (left), in comparison to that of a 64-bit computer (right), for vowel recognition by a network with two hidden layers. 
The elements (X, Y) of the matrices are the numbers of times a spoken vowel X is identified as Y. Perfect identification would give a diagonal 
matrix. (D) On-chip training of a nanophotonic OIU through in situ measurements. (E) An optically trained nanophotonic DNN implementing 
a logic XOR gate. The tables compare the network predictions before (left) and after (right) training. Target answers (truth table) are depicted 
with crosses, and predictions are denoted by circles. (A)–(C) are adapted from Ref. [23] by permission from Springer Nature; (D) and (E) are 
adapted with permission from Ref. [163], The Optical Society (OSA).
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employing the architecture in Ref. [23], the gradient terms 
of the cost function computed from backpropagation phys-
ically correspond to the error derivatives with respect to the 
permittivity of the phase shifters in the OIUs. Interestingly, 
this gradient distribution can be expressed as the solution 
to an electromagnetic adjoint problem. With the assistance 
of the adjoint variable method (AVM), an optimization 
technique used in the inverse design of photonics [169, 
170], the gradient at a phase shifter is given by the overlap 
of the optical fields from the “original” and “adjoint” 
problems. Figure 13D summarizes the training procedure 
demonstrated by simulations. The same flow applies if a 
real circuit is fabricated for experiments. The circuit has 
three input ports and three output ports to perform a 3 × 3 
unitary matrix multiplication (panel (i)). Training starts by 
sending an (original) input vector X from the left, e.g. [0 0 
1]T as in panel (ii). The intensities of the light field at each 
phase shifter is measured and stored as Iog. Next, an adjoint 
field δ, e.g. [0 1 0]T in panel (iii), is fed into the circuit from 
the output ports on the right. The field intensities are also 
measured and stored as Iaj. Based on the resulting field 
pattern, the time-reversed adjoint field XTR is calculated, 
which is then added to the original input X to feed the unit 
from the input ports, resulting in an interference pattern 
in panel (iv) and intensities I at each phase shifter. The 
final computation of the gradient is done simply by sub-
tracting Iog and Iaj from I, followed by a multiplication by 
a constant. The bottom two panels show the comparison 
of the gradient information, which are obtained by AVM 
with simultaneous excitations at both sides (panel (v)) 
and by the optical method (panel (vi)), namely, interfering 
the patterns in panels (ii) and (iv), respectively. The very 
good agreement confirms that the gradient terms can be 
determined by in situ intensity measurements at the phase 
shifters. This result is significant, because it allows the 
computation in parallel of the crucial gradient distribu-
tion. With two OIUs in Figure 13D connected in series, a 
logic XOR gate was demonstrated. Figure 13E reports the 
network predictions before and after training, where the 
latter shows obvious improvement, matching perfectly 
with the truth table.

The above integrated nanophotonic neural networks 
are composed of hundreds of components to implement 
their functionalities. When the platform is scaled up to 
involve thousands or even millions of artificial neurons, 
the complexity of the achievable tasks can be dramati-
cally boosted. Taking advantage of the analogy between 
information transformation through DNNs and light dif-
fraction in layered structures, in a recent work, Lin et al. 
experimentally demonstrated various complex func-
tions with an all-optical diffractive deep neural network 

(D2NN) [171]. The mechanism is illustrated in Figure 14A. 
Recalling the diagram in Figure 7, in a DNN, data are 
transformed from neuron to neuron via their intercon-
nections. In a layered diffractive structure, according to 
the Huygens-Fresnel principle, each single point on a 
certain layer acts as a secondary light source. The individ-
ual points are excited by the incoming light waves from 
points in the preceding layer and emit light to the sub-
sequent layer, resulting in, in theory, full “connectivity” 
between adjacent layers via diffraction and interference. 
Despite similarities in the layered structure and ways of 
connection, there are several differences between D2NNs 
and conventional DNNs. In standard DNNs, real-valued 
weights are associated with neuron connections, the 
neurons carry a nonlinear activation and an additive bias 
term, and the output of each neuron is the weighted sum 
of the real-valued inputs, computed by matrix multiplica-
tions. In contrast, D2NNs are complex valued due to the 
nature of the optical waves. The output of each point is 
given by the product of the input wave and the complex-
valued transmission or reflection coefficient at that point. 
In this process, the local transmission or reflection coef-
ficient applies a multiplicative bias to the output wave at 
that point, which is then weighted through propagation 
to interfere with other secondary waves at points on the 
next layer, physically implementing the matrix multipli-
cations. Two functions, namely, a classifier (Figure  14B) 
and an imaging lens (Figure 14C), were experimentally 
demonstrated at 0.4  THz using 3D-printed D2NNs with 
phase-only modulation, while the training process was 
still completed on a computer. The complexity of the 
tasks significantly increases the required number of 
neurons and of the training data. For the digit classifier, 
55,000 images of handwritten digits (0–9) were used to 
train a five-layer D2NN composed of ~0.2 million neurons. 
Because of their more abstract feature representation than 
digits, fashion products could be daunting for classifica-
tion. But remarkably, the numerical tests of a five-layer 
network showed a classification accuracy of 81.13%, and 
the experiments reached a 90% match with this result. 
Figure 14D shows a representative example of a sandal 
input image and the corresponding output intensity 
map (left column). As expected, most energy is directed 
to detector 5. The  confusion matrix and energy distribu-
tion for the whole experimental test dataset can be found 
in the right column. Although the reported classification 
accuracy is lower than the record of 96.7% from state-of-
the-art CNN algorithms [172], this D2NN uses almost one 
order of magnitude fewer neurons, and its performance 
can be improved by introducing amplitude modulation, 
additional layers, and possibly optical nonlinearity.
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Lastly, DNNs are sometimes described as “black 
boxes”, because it is almost impossible to extract an intui-
tive picture to explain how data are processed through 
the hidden layers. D2NNs may provide some insights into 
this. In Figure 14E, three spatially separated Dirac-delta 
functions are fed into a D2NN-based unit-magnification 
imager composed of 10 layers of phase-modulation masks 
(left panels). It can be seen from the amplitude and phase 
distributions that indeed each neuron is connected to 
various neurons in the next layer in an abstract way. The 
input neither propagates as needle-sharp beams nor dif-
fracts as in the free space (right panel). Rather, each delta 
function tends to be diffused at the beginning, attenuated 
in the halfway, and finally focused to the same point of 
the output plane as where it is emitted on the input plane. 

Visualizing wave propagation through the D2NN for this 
specific application helps to reveal the operation principle 
of the coherent optical DNNs.

5  �Conclusions and outlook
In this review, we have summarized the recent advances on 
nanophotonics that are enabled or powered by advanced 
computational methods, especially deep learning algo-
rithms. In the inverse design of nanophotonic devices, 
these techniques allow us to go beyond physical insights 
and help to search the parameter space in a more effi-
cient way, leading to data-driven, on-demand design of 
novel devices. In the opposite direction, the development 

Figure 14: All-optical machine learning by D2NNs.
(A) A D2NN consisting of multiple transmissive layers. Each point (color-coded squares) acts as a neuron by providing a multiplicative complex-
valued transmission coefficient to the incoming wave. The coefficient distribution is trained by deep learning algorithms to perform a predefined 
function and is fixed after fabrication. (B) Schematic of a 3D-printed N2DD implementing a classifier for handwritten digits and fashion products. 
Different types of objects on the input plane lead to maximized light intensity at the corresponding detector on the output plane. (C) Schematic 
of a 3D-printed N2DD implementing a lens for imaging. The output is a unit magnification image of the input optical field. (D) Classification of 
fashion products. Left: An input image belonging to a certain class of products, e.g. sandals, results in maximum energy at the corresponding 
detector on the output plane. Right: Confusion matrix and energy distribution for the full test dataset of the fashion products classifier. (E) Wave 
propagation in a N2DD imager with 10 layers. Left: Amplitude and phase distributions for an input of three Dirac-delta functions passing through 
the network. Right: Amplitude distribution for the same input passing through a vacuum. Diagrams at the bottom show the light intensities on 
the output plane. Figures are reprinted from Ref. [171] with permission from American Association for the Advancement of Science (AAAS).
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of nanophotonics could provide new platforms that can 
potentially overcome the bottleneck in computing power 
for machine learning. As the research interests and efforts 
on this topic continue increasing, we envisage that the fol-
lowing directions will be promising in the next stage of 
development.

First, advanced optimization techniques, especially 
gradient-based topology optimization that can handle 
up to 1 billion design variables efficiently [73, 173], allow 
for the design of nanophotonic devices with tremendous 
complexity. Whereas this capability has been applied to 
the aerospace industry, the design resolution for nano-
photonics is much lower. Increasing the number of design 
variables will empower the invention of more sophisti-
cated and more integrated metadevices.

Second, the current application of deep learning in 
nanophotonic inverse design is still limited to finding 
appropriate design parameters for the desired spectra. 
Using low-dimensional inputs such as spectra and dif-
fraction efficiencies [174] in the network ensures the data 
volume will not diverge but also restricts the achievable 
functionalities. Higher dimensional data such as the field 
intensity profiles as well as vectorial field maps carry 
much more information that can be used for designing 
functional metalenses and holograms. Blooming of nan-
ophotonic devices enabled by deep learning is expected 
once the difficulties in computation power and data 
storage are overcome.

Third, the mechanism of many optical effects and 
multiphysics processes involving optics has not been well 
understood, which hinders the physics-inspired design 
but is where machine learning can come into play. For 
instance, although DNNs can provide accurate solutions 
when an arbitrary CD spectrum is desired, engineering 
the near-field optical chirality arising from the complex 
interplay between electric and magnetic fields is a task far 
from being solved. Similarly, optimizing optical forces at 
the nanoscale is critical for optical tweezers [114–117, 175] 
and sorting [176–178]; nonlinearities of nanostructures 
for efficient harmonic generation and optical switching 
also have plenty of room to improve towards functional 
circuitry [179]. The lack of design guidelines makes them 
suitable problems for data-driven methods to deal with.

Next, despite the recent success in implementing 
DNNs on nanophotonic circuits and THz platforms, the 
all-optical realization of DNNs has not been fully dem-
onstrated. For example, the training process is mostly 
conducted on electronic chips or computers, which does 
not really fulfill the advantages over speed and energy 
consumption. On-chip training, as numerically demon-
strated, can overcome this limitation, while whether the 

losses will diminish the performance in a real system and 
how the measurement-based training can be effectively 
performed in large-scale networks containing at least 
thousands of neurons are potential issues to be addressed. 
D2NNs offer an alternative mechanism and platform to 
photonic circuits, whereas scaling down the THz scheme 
to visible or telecom wavelengths is demanding due to the 
limited fabrication resolution, interparticle coupling, and 
material losses. In addition, although demonstrated else-
where, optical nonlinearity has not been introduced in 
photonic DNNs. Therefore, resolving these challenges will 
be essential steps towards all-optical DNNs [180].

Lastly, the use of machine learning techniques 
in nanophotonics has just emerged. Among the early 
attempts introduced in this review, many of them use 
standard network models, which may not be the best fit 
for the target applications. It is possible that the demon-
strated performance can be simply improved by reforming 
the feeding data or modifying the network structure. RNNs 
that can learn from sequential inputs have been realized 
on a photonic platform very recently but not yet in nano-
photonics [181, 182]. Including time domain features in the 
dataset will be very attractive. Furthermore, other learning 
paradigms, such as unsupervised learning and reinforce-
ment learning, and combinations of deep learning and 
other computational methods are expected to provide new 
design frameworks that are faster, more accurate, and even 
independent of human knowledge [183].

Nanophotonics and machine learning are two 
research domains that differ from the very basis. While it 
is promising to apply machine learning methods to data-
driven nanophotonic design and discovery, many of the 
techniques, mature or cutting-edge, are not well known by 
the photonics community. Therefore, bridging this know-
ledge gap is pressing. Significant advancement will come 
out with further combination of the two fields.
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