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The past decade has seen major developments in the field of 
machine learning, and societal applications in healthcare, 
autonomous vehicles and language processing are becoming 

commonplace1. The impact of machine learning on basic research 
has been just as noteworthy, and the use of advanced algorithmic 
tools in data analysis has resulted in new insights into many areas 
of science. In physics, there has been particular interest applying the 
tools of machine learning to study dynamical complex systems that 
evolve in time. These systems exhibit extreme sensitivity to small 
variations of the governing parameters, and the use of conventional 
numerical methods to understand and potentially control these 
dynamics is challenging.

Nonlinear pulse propagation in optical-fibre waveguides is 
known to exhibit highly complex evolution, and machine learning 
methods have been applied in a variety of ways to both optimize and 
analyse their spectrum or temporal intensity profile at the fibre out-
put. For example, from a feedback and control perspective, evolu-
tionary algorithms (which are typically slow to converge) have been 
used in experiments optimizing particular characteristics of super-
continuum (SC) sources in single-mode2,3 or multimode fibres4,5, 
as well as the experimental control of mode-locked fibre lasers6–9. 
Machine learning using neural networks has also been applied to 
ultrashort pulse characterization10,11, in particular to reduce the 
complexity of real-time measurements of extreme events, and for 
the classification of different localization regimes in nonlinear mod-
ulation instability12. Applications to the control of mode locking10,13 
and pulse shaping14 have also been demonstrated numerically. Yet, 
all these applications have been restricted either to (slow) genetic 
algorithms or to feedforward neural network architectures limited 
to determine the correspondence between a given input and some 
single output parameter.

More generally, experiments in optical fibres are of very wide 
interest in nonlinear science as they provide a convenient means 
of studying the nonlinear dynamics common to many nonlinear 

Schrödinger equation (NLSE) systems, including hydrodynamics, 
plasmas and Bose–Einstein condensates. However, because propaga-
tion in an NLSE system depends sensitively on both the input pulse 
and fibre characteristics, the design and analysis of experiments 
require extensive numerical simulations based on the numerical 
integration of the NLSE or its extensions. This is computationally 
demanding and creates a severe bottleneck in using numerical tech-
niques to design or optimize experiments in real time.

In this Article, we present a solution to this problem using 
machine learning to predict complex nonlinear propagation in 
optical fibres with a recurrent neural network (RNN), bypassing 
the need for direct numerical solution of a governing propagation 
model. The general context of our work is the recent development 
of machine-learning approaches exploiting knowledge-based and 
model-free methods to forecast and thus control complex evolving 
dynamics. Knowledge-based (or physics-informed) methods rely 
on some a priori knowledge of the mathematical model governing 
the physical system, and they perform especially well in capturing 
nonlinear dynamics15–17. By contrast, model-free forecasting is a 
purely data-driven approach where a neural-network structure will 
learn the system dynamical behaviour from a set of training data, 
without any prior knowledge of the physics of the system or any 
underlying governing equation(s). Model-free methods have been 
particularly successful in forecasting spatiotemporal dynamics of 
physical systems exhibiting high-dimensional chaos, instabilities 
and turbulence18–20, as well as reproducing the propagation dynam-
ics of certain analytical solutions of the NLSE21.

Our objective here is to extend the use of model-free methods 
in nonlinear physics by showing how a long short-term memory 
(LSTM) RNN can accurately reproduce the complex nonlinear 
dynamics of ultrashort pulse evolution in optical fibre governed by 
an NLSE system. With such dynamics, the temporal (and spectral) 
intensity profiles at a particular distance depend on the intensity 
profile at earlier distance, and this motivates the use of an RNN 
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with internal memory, an architecture particularly well suited to 
modelling sequential dependencies. This approach contrasts with 
previous machine-learning studies of nonlinear pulse propagation, 
which used only a relatively simple feedforward network architec-
ture to map broadband modulation instability spectra to the local 
intensity maximum of the corresponding temporal field12.

Exploiting the memory capacity of RNNs allows modelling of 
the full nonlinear evolution map of injected short pulses in an opti-
cal waveguide in both temporal and spectral domains. We study two 
particular cases of practical importance: high-power pulse com-
pression associated with the generation of Peregrine-soliton struc-
tures, and broadband optical SC generation. In the first case, we 
demonstrate that the network accurately models the temporal and 
spectral evolution of higher-order solitons and the appearance of 
the Peregrine soliton from a transform-limited intensity profile, and 
we also show how the predicted results agree with reported experi-
mental measurements22. We then expand our analysis to even more 
complex dynamics and show how the network can also predict the 
full development of an octave-spanning SC with fine details in the 
spectral and temporal domains.

Finally, we show how the RNN model can be generalized to 
different input-pulse characteristics and optical-fibre systems 
to reproduce a wider range of propagation scenarios, including 
nonlinear dynamics in multimode fibres. These results represent 
a major extension of the model-free methods applied to nonlin-
ear optics, with potential important impact for high-field physics, 
nonlinear spectroscopy and precision frequency comb metrol-
ogy. Moreover, we anticipate that our results will stimulate similar 
studies in all areas of physics where NLSE-like dynamics play a  
governing role.

Model-free modelling of nonlinear propagation dynamics
The propagation of light in an optical fibre can be represented as a 
sequence of electric-field complex amplitude distributions (spectral 
or temporal) at different points along the propagation path in the 
fibre. The amplitude at any specific propagation distance is natu-
rally determined by the evolution that precedes it, and modelling 
this evolution is conventionally carried out by numerically integrat-
ing a governing NLSE model over a large number of elementary 
steps23. Unfortunately, this conventional approach can be extremely 
time-consuming.

Here, we show that such a direct numerical approach can in fact 
be replaced with model-free forecasting using an RNN. RNNs are 
a particular class of neural network that possess internal memory, 
allowing them to account for long-term dependencies and thus to 
robustly identify patterns in sequential data24. The fact that RNNs 
intrinsically allow modelling of dynamic behaviour makes them 
particularly adapted to the processing and predictions of time series 
with applications in speech recognition, predictive texting, hand-
writing recognition, natural language processing or stock market 
analysis. They are equally a natural choice to predict the evolution 
of nonlinear propagation dynamics as a high-power optical field 
propagates in an optical fibre.

The particular form of RNN we use is the LSTM cell architec-
ture25. Although other approaches such as reservoir computing or 
the gated recurrent unit would also be possible, our choice of LSTM 
is based on its simplicity of implementation and demonstrated suc-
cess in various applications26,27. We train the network to be able to 
separately and independently forecast the evolution of temporal 
and spectral intensity during nonlinear pulse propagation in opti-
cal fibre, based only on the initial condition of a transform-limited 
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Fig. 1 | recurrent neural networks. a, Schematic of the RNN architecture used, showing the input layer, the LSTM recurrent layer, two hidden (dense) layers 
and the output layer. b, The neural network uses the spectral (or temporal) intensity profiles Xz − 1 from the 10 previous intensity profiles hz − 10Δz..hz − Δz in the 
evolution to yield the subsequent spectrum hz. Each intensity profile h consists of B intensity bins denoted as xk, where k indicates the bin number. c, The 
LSTM cell receives the cell input, hidden and cell states from the previous step as an input, and the output of the cell is the new hidden state that is also 
passed on to the next prediction step along with the new cell state. xi is the cell input, where i = z, z − Δz, hi denotes the hidden state and ci is the cell state. 
The yellow rectangles denote layer operations and the orange circles denote pointwise operations. See Methods for more details on the number of nodes 
used per layer, activation functions and so on. More details and a definition of the different cell elements are provided in the Methods.
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pulse. Of course, physically, the temporal and spectral field charac-
teristics are tightly coupled, and it is therefore remarkable that the 
network is able to learn, independently, the temporal and spectral 
evolution dynamics using only intensity data. To teach the network 
the pulse propagation dynamics, initial training is performed using 
ensembles of temporal and spectral intensity evolution maps, gener-
ated numerically using simulations of the NLSE (or its generalized 
version, the GNLSE) for a range of input pulse characteristics. To 
reduce the computational load during training, the simulation pro-
files are downsampled along both the propagation direction and the 
temporal and spectral dimensions (Methods).

A general schematic of the RNN is shown in Fig. 1a and an 
illustration of the training stage is shown in Fig. 1b. Ten consec-
utive temporal or spectral intensity profiles hz − 10Δz..hz − Δz (that 
is, the evolution from distance z − 10Δz to z − Δz) are fed to the 
RNN. Here, Δz corresponds to the sampling distance along the 
propagation direction (Methods). The choice to feed the network 
with 10 consecutive intensity profiles at propagation interval Δz 
was found to be a good heuristic compromise between speed and 
performance (Methods). These intensity profiles are then passed 
to the LSTM layer consisting of cells (Fig. 1c), governed by a spe-
cific algorithm (Methods). The LSTM layer essentially uses three 
different types of information to predict the (spectral or tempo-
ral) intensity profile hz at distance z: (1) the intensity profile hz − Δz 
at distance z − Δz, which is the input of the LSTM layer, (2) the 
hidden state of the layer corresponding to the predicted intensity 
profile hz − 2Δz at distance z − 2Δz and (3) the cell state that contains 
the long-term dependency information from the intensity pro-
files hz − 10Δz..hz − 3Δz corresponding to the evolution from distance  
z − 10Δz to z − 3Δz.

The output of the LSTM layer is subsequently fed to a fully con-
nected feedforward neural network with two hidden (dense) lay-
ers whose function is to further improve the predicted intensity at 
distance z. The prediction made by the RNN (output layer) is com-
pared with the intensity profile from the NLSE (or GNLSE) simu-
lations. The error is backpropagated to the weights and biases of 
the network nodes (both dense and LSTM layers), which are subse-
quently adjusted to minimize the prediction error. The RNN cycle 
is then initiated again with an updated input consisting of the con-
secutive temporal or spectral intensity profiles hz − 9Δz..hz until the 
full evolution is predicted. Note that the RNN loop is initiated with 
a ‘cold start’ where the input sequence contains only the spectral or 
temporal intensity profile of pulses injected into the fibre (replicated 

10 times). In the prediction phase, the RNN model is tested using 
a separate set of temporal and spectral evolution data that was not 
used in the training phase.

results
Higher-order soliton compression. We begin by training the RNN 
to model the propagation of picosecond pulses in the anomalous 
dispersion regime of a highly nonlinear fibre. This propagation 
regime is of particular significance as it is associated with extreme 
self-focusing dynamics and practical ‘higher-order soliton’ pulse 
compression schemes23. Moreover, the dynamics of this nonlinear 
temporal compression have been shown, recently, to be associ-
ated with the emergence of the celebrated Peregrine soliton, which 
appears in the semiclassical limit of the NLSE22.

The training data were generated by performing 3,000 NLSE 
numerical simulations of propagation in 13 m of fibre using initial 
conditions of transform-limited hyperbolic-secant input pulses. 
The fibre parameters were kept constant between simulations and 
corresponded to experiments performed around 1,550 nm (ref. 22). 
On the other hand, we varied the pulse duration Δτ (full-width at 
half-maximum, FWHM) and peak power P0 uniformly over ranges 
of 0.77–1.43 ps and 18.6–34.2 W, respectively. This yields a variation 

in soliton number N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γP0T2

0=jβ2j
q

I

 from 3.5 to 8.9 (γ and β2 

are the fibre nonlinear and group velocity dispersion parameters 
respectively, and T0 = Δτ/1.763). Further details are provided in  
the Methods.

We first illustrate the results obtained when training the net-
work to model the temporal intensity evolution. Figure 2 compares 
the evolution of the temporal intensity simulated using the NLSE  
(Fig. 2a) with that predicted by the RNN (Fig. 2b). The particular 
results shown correspond to an input soliton number N = 6. One can 
see the overall excellent visual agreement between the propagation 
dynamic predicted by the RNN and those simulated from the NLSE. 
Also notice that the distance of maximum compression and associ-
ated temporal intensity profile are particularly well predicted by the 
RNN. Figure 2c shows the relative difference between the NLSE and 
RNN evolution maps, with a root-mean-square (r.m.s.) error, com-
puted over the full evolution, of R = 0.04 (Methods). Comparisons 
between NLSE and RNN evolution for 100 different input condi-
tions spanning the full range of parameter variation showed similar 
results, with an r.m.s. error computed over the 100 evolution maps 
of R = 0.097 (Methods).
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Fig. 2 | Temporal-evolution rNN modelling of higher-order soliton propagation dynamics. a–c, Temporal intensity evolution of a 1.1-ps (FWHM) pulse 
with peak power of 26.3 W corresponding to an N = 6 soliton injected into the anomalous dispersion regime of a 13-m-long highly nonlinear fibre: NLSE 
numerical simulation (a), RNN prediction (b) and relative difference (c). The RNN predictions use only the injected pulse intensity profile as input.
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A more detailed comparison between the NLSE simulations, 
RNN prediction and experimental measurements at selected dis-
tances is plotted in Fig. 3. For this case, note that third-order disper-
sion was also included in the training simulations (Methods). The 
figure shows the intensity profiles predicted by the RNN (solid blue 
line), the profiles from the NLSE simulations (dashed red line), as 
well as the experimental measurements (black dotted line) previ-
ously reported in ref. 22. One can see remarkable agreement at all 
distances between the three sets of results, and we stress in particu-
lar that the RNN reproduces both the compressed central portion 
and the side lobes of the Peregrine soliton associated with maximal 
compression around 10 m.

We also tested the ability of the RNN to predict the propaga-
tion dynamics in the spectral domain from the corresponding input 
spectrum. Here, we use the same ensemble of NLSE numerical sim-
ulations as for the temporal evolution, but this time we train the net-
work by feeding the spectral intensity evolution. Results for input 
conditions identical to those of Figs. 2 and 3 are shown in Fig. 4. 
For convenient visualization, the evolution is plotted in logarithmic 
scale. The spectral evolution consists of an initial stage of spectral 
broadening dominated by self-phase modulation and correspond-
ing to the compression observed in the time domain. After the 
point of maximum expansion, we see a breathing phase of narrow-
ing and re-expansion typical of higher-order soliton propagation. 
One can see excellent agreement between the dynamics predicted 
from the network and that simulated with the NLSE, with a rela-
tive discrepancy of less than 5 dB over the entire evolution (r.m.s. 
error computed over the full spectral evolution, R = 0.039). Note, 
here, that the training data are fed to the network in logarithmic 
scale, which reduces the noise level in the prediction arising from 
the minimization of the r.m.s. error function during the training 
phase (Methods). Of course, it is perfectly possible to train the net-
work using linear spectra, but this yields a higher noise floor in the 
predicted evolution, as illustrated in the Extended Data Fig. 1.

The excellent correspondence is confirmed in Fig. 5 when plot-
ting a detailed comparison between the RNN predicted (solid blue 
line), simulated (dashed red line) and experimentally measured 
spectra (black dotted line) at selected distances z around the maxi-
mal temporal compression point, as previously considered and 
which is naturally also the point of maximum spectral broadening. 

In particular, one can see the excellent agreement between the NLSE 
and RNN results over a dynamic range of 40 dB. We also performed 
a series of tests for 100 different input pulse spectra spanning the 
full range of parameter variation and found similar network per-
formances in terms of predicted evolution, with an r.m.s. error of 
R = 0.042 (computed over the 100 evolution maps tested).

Supercontinuum generation. We next extended our study to even 
more complex propagation dynamics and the generation of a broad-
band SC. Here, we focus our attention on a SC generated by inject-
ing femtosecond pulses into the anomalous dispersion of a highly 
nonlinear fibre. This regime is of particular significance as it has 
been shown to be associated with high spectral coherence and the 
generation of stable frequency combs as well as yielding the broad-
est SC spectra28.

To test whether a recurrent neural network could learn SC gener-
ation dynamics and model their evolution, we generated an ensem-
ble of SC propagation dynamics using the GNLSE, which includes 
the frequency dependence of dispersion and nonlinearity, as well as 
the delayed Raman response28. Specifically, we simulated the propa-
gation of 100-fs transform-limited pulses at 810 nm injected into 
the anomalous dispersion regime of a 20-cm-long photonic-crystal 
fibre with zero dispersion at 750 nm, similar to that used in ref. 12. 
Detailed parameter values are provided in the Methods. The ensem-
ble includes simulations for a transform-limited input pulse with 
peak power uniformly distributed in the 500 W to 2 kW range that 
yields SC spectra with different characteristics, from isolated dis-
persive wave generation to a fully developed octave-spanning SC 
with very fine spectral features. We emphasize that, although the 
input pulse duration was kept constant for all simulations, the pre-
dicted results for other durations show similar agreement with the 
GNLSE, as in the specific cases discussed below.

We begin by training the network from the temporal intensity 
evolution. Similarly to the higher-order soliton compression case, 
the simulation profiles are downsampled along both the propaga-
tion direction and the temporal and spectral dimensions (Methods). 
After training, the RNN model is tested for an input peak power 
not used in the training stage and the predicted evolution is com-
pared with that directly simulated with the GNLSE for the same  
input power.

z = 9.0 mz = 8.4 m

0

50

100

150

200

250
RNN

GNLSE

EXPTS

z = 7.6 m

z = 10.6 mz = 10.0 m

–0.4 –0.2 0 0.2 0.4 0.6–0.4 –0.2 0 0.2 0.4 0.6–0.4 –0.2 0 0.2 0.4 0.6
0

50

100

150

200

250

z = 9.4 m

T
em

po
ra

l i
nt

en
si

ty
 (

W
)

Time (ps)Time (ps) Time (ps)

T
em

po
ra

l i
nt

en
si

ty
 (

W
)

Fig. 3 | experimental validation of higher-order soliton temporal dynamics rNN modelling. Higher-order soliton (N = 6) temporal intensity at selected 
distances z predicted by the neural network (solid blue lines), simulated with the NLSE (dashed red lines), and experimentally measured (black dotted 
lines). Experimental data are from ref. 22.
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Results are shown in Fig. 6a,b for input peak powers of 630 W 
and 1.96 kW, corresponding to input soliton numbers of N = 4.6 and 
N = 8.1, respectively. These values were chosen as they lead to a SC 
with very distinct characteristics. The left panel shows the tempo-
ral intensity evolution from the GNLSE simulation and the central 
panel shows the evolution predicted by the RNN. The SC generation 
process arises from soliton dynamics including higher-order soli-
ton compression, soliton fission and dispersive waves emission on 
the short wavelength side28. For longer propagation distances, soli-
tons emerging from the fission experience a Raman self-frequency 
shift, expanding the SC spectrum towards the long wavelength 
side28. Importantly, in both scenarios, one can see excellent visual 
agreement between the GNLSE simulations and RNN model. The 
point of soliton fission and dispersive emission as well as the red-
shifting solitons’ parabolic trajectories are perfectly reproduced 
by the network. The r.m.s. errors calculated over the full intensity 
evolution are R = 0.097 and R = 0.049 for Fig. 6a,b, respectively. The 

remarkable ability of the RNN to predict very complex nonlinear 
dynamics is further highlighted in the right panels, in which we 
plot a detailed comparison between the predicted and simulated 
SC temporal intensity at selected distances along the propagation, 
where we can see how the amplitude and delay of the dispersive 
waves and Raman-shifted solitons are also predicted with excellent 
accuracy at all stages of the propagation. Additional predictions run 
for 50 different values of pulse peak power (not used in the training 
phase) also showed very good agreement with the GNLSE simula-
tions (r.m.s. error of R = 0.176 computed over 50 different evolution 
maps tested).

We then tested the ability of the RNN model to predict the SC 
spectral intensity evolution from the input pulse spectrum. The 
results for an input peak power of 630 W and 1.96 kW are shown in 
Fig. 6c,d, respectively. For convenient visualization, the evolution 
is plotted in logarithmic scale. In the case of lower peak power, one 
can see that the SC spectrum at the fibre output essentially consists 
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Fig. 6 | Temporal and spectral evolution rNN modelling of a supercontinuum. a–d, Temporal (a,b) and spectral (c,d) evolution RNN modelling of the 
SC. Left panels: numerical simulation (GNLSE) of SC evolution in a 20-cm photonic-crystal fibre for a 100-fs pulse with peak power of 630 W (a,c) and 
1.96 kW (b,d). See Methods for a full description of the fibre parameters. Middle panels: predicted (RNN) temporal intensity evolution for the same initial 
temporal intensity profile as in the GNLSE simulations. Right panels: comparison between the predicted (solid blue lines) and simulated (dashed red lines) 
profiles at selected distances z (indicated by white dashed lines in the left and middle panels).
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of an isolated dispersive wave and solitons with a limited amount 
of redshift. For larger input peak power, we see multiple dispersive 
wave emission and well-separated Raman-shifted solitons resulting 
in an octave-spanning SC. Again, we can see very good visual agree-
ment between the simulated and predicted evolution maps, and all 
spectral features—including dispersive waves, Raman-shifted soli-
tons and their interference, which lead to fine spectral features—are 
perfectly reproduced by the RNN. Additional predictions run for 
50 different input pulse peak power values (not used in the training 
phase) also showed very good agreement with the GNLSE simula-
tions (r.m.s. error, R = 0.09).

Generalization
The results above have focused on the specific cases of the Peregrine 
soliton dynamics that appear during the initial compression stage 
of transform-limited picosecond pulses, and SC generation in the 
femtosecond regime. For these examples we have shown that the 
RNN can learn and model evolution maps for a range of different 
peak powers. More generally, however, nonlinear dynamics are not 
only sensitive to input peak power, but also to other characteristics, 
including, for example, input pulse duration and phase (chirp) as 
well as the fibre (or waveguide) parameters (dispersion, nonlinear-
ity). This is particularly true for soliton compression and SC genera-
tion where, for example, a change in pulse duration or dispersion 
profile can lead to dramatically different evolution maps and output 
spectral and temporal profiles.

From the perspective of potential applications, the ability to 
generalize the use of RNN modelling of evolution dynamics over a 
wider range of propagation scenarios is especially important. A nat-
ural question is then how the neural network architecture trained 
for a particular system can be ‘transferred’ to a different system. 
To develop a more generic model that can reproduce nonlinear 
dynamics over a large range of input conditions and system param-
eters, the RNN can be trained from evolution maps simulated using 
the normalized form of the (G)NLSE (Methods), while adding the 
particular characteristics of interest (input duration, chirp, disper-
sion, nonlinearity) as additional input parameters to the RNN. The 
propagation dynamics for a particular set of characteristics can then 
be reproduced using normalized variables. Using this approach, the 
Extended Data figures show a series of examples demonstrating 
the ability of the network to model dynamics for various additional 
propagation scenarios including: higher-order soliton propagation 
of the NLSE for different pulse durations (Extended Data Fig. 2) 
and chirp values (Extended Data Fig. 3), and the SC dynamics of 
the GNLSE for input pulses with different duration, peak power and 
fibre dispersion (Extended Data Fig. 4).

To mimic realistic experimental conditions, we also tested the 
ability of the network to predict the nonlinear evolution dynamics 
over a wide range of initial conditions in the presence of multiplica-
tive noise and found that the network still performs well for a noise 
level in excess of 20% (Methods), as shown in Extended Data Fig. 5.

Finally, we emphasize that the RNN architecture can be adapted 
to model multidimensional systems such as nonlinear propagation 
in multimode fibres. For example, one can feed the network with 
evolution maps corresponding to different injection conditions 
(Methods), which can be learned and reproduced by the network 
as illustrated in Extended Data Fig. 6. These particular results could 
extend the operation range and speed up the optimization and 
control of spatiotemporal instabilities in multimode systems4,5. A 
similar approach is also adapted to model polarization-dependent 
propagation in a single-mode fibre.

Discussion
As seen from the results presented above, the propagation dynam-
ics of short pulses are complex and highly nonlinear. For practical 
application purposes, for example in pulse compression, optical 

sensing and high-resolution and real-time imaging, optimizing 
these dynamics generally requires extensive and computationally 
demanding integration of the GNLSE. From the results above it is 
clear that, once trained, the RNN is able to substitute itself for the 
integration of the GNLSE and can predict evolution maps in excel-
lent correspondence with the GNLSE simulations. An important 
advantage of the RNN is then the greatly reduced computation time 
required to produce evolution maps, as shown in Extended Data 
Fig. 7. In particular, unlike the numerical integration of the GNLSE, 
the RNN computation time is independent of the number of points 
in the temporal and spectral grid, such that, for a large number of 
evolution maps, the discrepancy between GNLSE and RNN simula-
tions can exceed two orders of magnitude (9,655 s for 1,000 GNLSE 
simulations with 8,192 temporal grid points using MATLAB v2020a 
running on a 2.5 GHz dual-core Intel Core i7 processor versus 36 s 
for the 1,000 RNN predictions in Python using Keras running on 
an NVIDIA Quadro K620 graphics processing unit, GPU). The dif-
ference is even more marked when considering multimode fibre 
simulations. For example, 1,000 realizations of multimode propaga-
tion simulations for different coupling conditions and including five 
modes with 4,096 grid points takes nearly 95 h (more than 5 min 
each), but, once trained, the RNN prediction for 1,000 distinct input 
coupling conditions only takes ~30 s.

In general, the GPU and central processing unit (CPU) resources 
needed for training the RNN will vary depending on the size of 
training data, number of temporal/spectral grid points, the network 
hyperparameters and characteristics of the computer used (proces-
sor and memory), but it is useful to examine them in more detail 
to illustrate the benefit of the RNN model. For the particular com-
puter used in this work, these resources are summarized in Table 1 
for all the cases illustrated in the different figures. One can clearly 
see that, besides significantly reduced computation time, there are 
also other advantages associated with the RNN, including reduced 
resources, dimensionality reduction and the ability to construct 
dynamics from sparse data, resulting in important memory saving 
(for example, 1,000 GNLSE evolution maps with 8,192 temporal 
grid points use over 8 GB of random access memory, whereas the 
RNN hyperparameters use a mere 5.6 MB). Such time and memory 
saving shows the potential of RNNs to overcome the bottlenecks 
encountered in designing and optimizing experiments in real time, 
allowing us to identify particular boundary conditions to operate in 
a specific dynamical regime, determine optimum injection condi-
tions for a given system configuration, adjust the input pulse char-
acteristics to maintain stable operation or generate tailored spectral 
(or temporal) profiles at specific propagation distances.

Conclusions
We have shown that machine-learning techniques can bring new 
insight into the study and prediction of nonlinear optical systems. 
Specifically, we have demonstrated that an RNN with LSTM can 
learn the complex dynamics associated with the nonlinear propaga-
tion of short pulses in optical fibres, including higher-order soli-
ton compression and SC generation using solely the pulse intensity 
profile as input condition. The network is also able to reproduce 
dynamics in both the temporal and spectral domains, and for the 
particular case of higher-order soliton compression we have been 
able to confirm that the predicted evolution maps are also in excel-
lent agreement with experiments. Previous applications of machine 
learning to ultrafast dynamics have been restricted to slow genetic 
algorithms or feedforward neural networks designed to estab-
lish the transfer function between specific input–output param-
eters6,9,10,14,29. Although useful from a purely application perspective, 
these approaches are nevertheless not capable of capturing non-
linear dynamics. Our results using an RNN are thus particularly 
notable considering the extremely complex nature of the temporal 
and spectral evolution, and they show how a network with advanced 
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architecture is able to learn and reproduce the essential physics of 
nonlinear propagation.

From an experimental perspective, it is well recognized that the 
study of distance-dependent nonlinear propagation in waveguides 
is difficult, as it requires extensive cut-back measurements in incre-
mental steps, and it is precisely here where a network trained on 
simulations and performing accurately within the typical range of 
experimental parameters would be extremely valuable. We expect 
that neural networks will very soon become an important and stan-
dard tool for analysing complex ultrafast dynamics, for optimiz-
ing the generation of broadband spectra and frequency combs, as 
well as for designing ultrafast optics experiments. Future work may 
also expand the parameter space of the RNN operation by includ-
ing additional training variables or extending the predictions to the 
complex field (amplitude and phase).

Ultrafast laser beams are multidimensional systems and the 
extent to which their spatial, temporal and spectral properties 
can be controlled is central to achieving optimum performance in 
adaptive optics and coherent control. Although there are various 
pulse-shaping technologies that can be applied to tune these char-
acteristics, the optimization process can be particularly tedious, 
generally involving multiple parameters that are interconnected 
in complex ways, and heuristic or manual approaches are often 
used. By enabling more systematic strategies, this is a particular 
area of application where the use of an RNN capable of modelling 
the propagation dynamics associated with a wide range of input 
parameters could enable an unprecedented level of control, with 
particular applications, for example, in optimized nonlinear pulse 
compression schemes, the generation of tailored broadband spectra, 
or spatial beam profiles with particular temporal (spectral) inten-
sity distributions. For example, one could use the RNN to identify 
specific initial conditions that yield a desired output (spectrum, 
temporal and spatial profiles) for a particular fibre system or, given 
particular input conditions, to determine the optimum propagation 
distance to generate the output of interest. In another scenario, one 

could also consider using the injected and measured spectral (or 
temporal) profiles in a waveguide or fibre to characterize its disper-
sion and nonlinear coefficient.

From a more fundamental perspective, although, here, we have 
focused our study on optical pulse propagation, the approach intro-
duced is very generic and can be applied to other physical systems, 
such as hydrodynamic waves or Bose–Einstein condensates where, 
under particular conditions, the dynamics are governed by non-
linear Schrödinger equations. For example, one could use an RNN 
architecture to model the propagation of water waves and identify 
specific initial conditions that lead to the observation of particular 
dynamics in a controlled environment such as water tanks. More 
generally, we believe that the use of RNNs will impact the future 
design and analysis of nonlinear physics experiments as they repre-
sent a natural candidate for exploring and analysing complex opera-
tion regimes with long-term dependencies.

Methods
Numerical simulations. The numerical simulations in this work are from the 
NLSE and its generalized extension (1 + 1D), which describe the propagation of the 
slowly varying optical field envelope.

Higher-order soliton compression. We model the propagation of short pulses in the 
anomalous dispersion regime of a 13-m nonlinear optical fibre. The pulses have 
a hyperbolic-secant intensity profile centred at 1,550 nm, with pulse duration and 
peak power varying from 0.77 to 1.43 ps and from 18.41 to 34.19 W, respectively. 
The nonlinear coefficient of the fibre is γ = 18.4 × 10−3 W−1 m−1 and the group 
velocity dispersion coefficient at 1,550 nm is β2 = −5.23 × 10−27 s2 m−1. When 
comparing with the experiments, third-order dispersion (β3 = 4.27 × 10−41 s3 m−1) 
was also included in the training in addition to a small input pulse asymmetry 
caused by the experimental implementation22. The simulations use 1,024 spectral/
temporal grid points with a temporal window size of 10 ps and step size of 0.13 mm 
(10,000 steps). For completeness, shot noise is added via one-photon-per-mode 
with random phase in the frequency domain, although noise effects were found to 
play no major physical role in the regime of coherent propagation studied here.

Supercontinuum generation. We model the propagation of a sech-type pulse centred 
at 810 nm and with a pulse duration of 100 fs. The peak power of the input pulse is 

Table 1 | Comparison of GPu/CPu and rAM resources used during the (G)NLSe simulations and rNN training

(G)NLSe CPu (%) rAM (GB)a Points Steps real.

HOS compression 400 4.96 1,024 10,000 3,000

SC generation 400 8.52 2,048 10,000 1,300

Normalized NLSE 400 0.84 512 10,000 1,000

Chirped NLSE 400 19.9 2,048 10,000 6,000

Normalized GNLSE 400 79.4 8,192 9,000 12,000

Multimode GNLSE 400 6.58 4,096 5,000 1,000

rNN CPu (%) GPu (GB) rAM (GB) NN (MB) Var. Bins Steps real.

HOS (temporal) 192 1.24 4.54 2.25 278k 151 101 3,000

HOS (spectral) 194 1.24 3.98 2.09 258k 126 101 3,000

SC (temporal) 134 1.24 6.70 9.79 1.22M 276 200 1,300

SC (spectral) 157 1.24 6.17 5.56 691k 251 200 1,300

Norm. NLSE

(temporal) 143 1.24 2.94 7.44 926k 256 101 1,000

(spectral) 165 1.24 1.91 4.32 537k 128 101 1,000

Chirped NLSE 135 1.24 13.9 7.53 938k 256 101 6,000

Norm. GNLSE 161 1.24 7.76 2.49 609k 132 51 12,000

MMGNLSE 116 1.24 3.51 18.5 2.31M 301 50 1,000
aThe instantaneous memory usage can reduced by running the simulations in batches or by convolving the spectral/temporal intensity profiles during the simulations. Results are shown for higher-order 
soliton (HOS) compression, supercontinuum (SC) generation, normalized NLSE, chirped NLSE, normalized GNLSE and multimode GNLSE (MMGNLSE) cases. The number of bins, propagation steps and 
realizations (Real.) used during training as well as the number of variables (Var.) and memory utilized by the RNN hyperparameters (NN) to reproduce the nonlinear dynamics evolution are also indicated. 
CPU usage of greater than 100% reflects the distribution of tasks among the four cores of the processor.
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randomly varied in the range 0.5–2 kW. The pulses are injected in the anomalous 
dispersion regime of a 20-cm nonlinear optical fibre, including higher-order 
dispersion terms, self-steepening and the Raman effect. The nonlinear coefficient 
of the fibre is γ = 0.1 W−1 m−1 and the Taylor-series expansion coefficients of 
the dispersion at 810 nm are β2 = −9.59 × 10−27 s2 m−1, β3 = 7.84 × 10−41 s3 m−1, 
β4 = −6.84 × 10−56 s4 m−1, β5 = −4.78 × 10−70 s5 m−1, β6 = 2.71 × 10−84 s6 m−1 and 
β7 = −5.00 × 10−99 s7 m−1. The simulations use 2,048 spectral/temporal grid points 
with a temporal window size of 5 ps and step size of 0.02 mm (10,000 steps). Shot 
noise is added via one-photon-per-mode with random phase in the frequency 
domain, but in the coherent propagation regime studied here, noise effects were 
found to play no major physical role.

Normalized NLSE. To generalize the range of input pulse characteristics and fibre 
parameters over which the RNN can predict higher-order soliton dynamics, we 
model the propagation of pulses using the normalized form of the NLSE:

i
∂ψ

∂ξ
� sgn ðβ2Þ

2
∂
2ψ

∂τ2
þ jψ j2ψ ¼ 0 ð1Þ

where τ = T/T0, ξ ¼ zjβ2j=T2
0

I
 and ψðξ; τÞ ¼ NAðz;TÞ=

ffiffiffiffiffi
P0

p

I
 are the normalized 

time, propagation distance and amplitude, respectively, and A(z,T) represents the 
dimensional temporal envelope of the field. The input pulses are taken to have a 
hyperbolic-secant intensity profile centred at 1,550 nm and the soliton number N 
is varied randomly from 1 to 7. The simulations use 512 temporal grid points with 
temporal window size of 10 (normalized units) and the fibre length is set to π/8 
(corresponding to a quarter of the soliton period ξsol = π/2) with 10,000 steps. The 
pulses are injected in the anomalous dispersion regime of the NLSE.

We performed another set of simulations where a linear frequency chirp was 
included as an additional input parameter to the network and corresponding  
to an input pulse amplitude of the form ψð0; τÞ ¼ N sech ðτÞ expð i Cτ2=2Þ

I
,  

where N is the soliton number, τ is normalized time and C is the chirp parameter.  
The soliton number N and chirp parameter C were varied randomly in the 
intervals 1 to 7 and −5 to +5, respectively. The simulations use 2,048 spectral  
grid points with temporal window size of 40 (normalized units) over a normalized 
fibre length of π/8 split into 10,000 steps.

Normalized GNLSE. To extend the applicability of the RNN predictions to a wider 
range of SC scenarios, we modelled SC generation dynamics with the normalized 
form of the GNLSE:
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I
, q = β3/(∣β2∣T0), 

s = 1/(ω0T0) and r are the normalized time, propagation distance, amplitude, 
third-order dispersion, shock-term and Raman response, respectively. We assume 
transform-limited hyperbolic-secant pulses centred at 835 nm in the anomalous 
dispersion regime (that is, sgn(β2) = −1). The soliton number, pulse duration 
and third-order dispersion parameter were randomly varied in the intervals 2–8, 
30–130 fs and 1–9, respectively. The simulations used 8,192 temporal grid points 
with temporal window size of 350 (normalized units) and normalized distance set 
to 2 with 9,000 steps.

Multimode GNLSE. We model the nonlinear propagation of hyperbolic-secant 
pulses with peak power of 2.5 MW and pulse duration of 150 fs (FWHM) at 
1,500 nm in a 25-cm multimode step-index silica fibre using the multimode 
GNLSE30. The fibre was assumed to have a 50-μm core radius and core-cladding 
refractive index difference of Δn = 0.0137. We consider the propagation in five 
transverse modes (LP01, LP11, LP02, LP12 and LP03) whose initial coupling conditions 
are randomly varied while keeping the injected power constant. The simulations 
use 4,096 spectral/temporal grid points with a temporal window size of 6 ps and a 
step size of 0.05 mm (5,000 steps).

Recurrent neural networks. LSTM network operation. The operation of an  
LSTM cell can be described at time step t with input xt 2 Rdo

I
 by a set of equations 

given by25

f t ¼ σðWf ½ht�1; xt  þ bf Þ it ¼ σðWi½ht�1; xt  þ biÞ
~ct ¼ tanhðWc½ht�1; xt  þ bcÞ ct ¼ f t  ct�1 þ it  ~ct
ot ¼ σðWo½ht�1; xt  þ boÞ ht ¼ ot  tanhðctÞ

ð3Þ

where ft, it and ot 2 Rdh

I
 are the forget, input and output gate vectors, respectively, 

with dh denoting the dimensionality of the hidden state (that is the number  
of hidden units). Vectors ct and ht 2 Rdh

I
 are the updated cell and hidden state, 

respectively, and Wf, Wi, Wc and Wo 2 Rdh ´ ðdhþdoÞ

I
 represent the cell weights  

and bf, bi, bc and bo 2 Rdh

I
 are the biases. The sign ⊙ denotes pointwise 

multiplication. The weights and biases of the network are iteratively trained  
via backpropagation31.

Feedforward network operation. The operation of the fully connected layers is 
similar to that in ref. 12. The codes were written in Python using Keras32 with the 
Tensorflow backend33.

Comparison between RNN prediction and (G)NLSE simulations. A quantitative 
comparison between the network predicted evolution map and that simulated  
with the (G)NLSE can be performed using the average (normalized) r.m.s. errors 
as a metric:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;dðxm;i;d � x̂m;i;dÞ2P

i;dðxm;i;dÞ2

vuut ð4Þ

where xm and x̂m
I

 denote the (G)NLSE and RNN predicted intensity profile for 
realization m. The variables i and d indicate summation over the intensity profiles 
and propagation steps, respectively. When evaluating the performance of the 
prediction over an ensemble of M evolution maps, the r.m.s. error is calculated over 
M distinct realizations.

Higher-order soliton compression. An ensemble of 3,000 numerical simulations 
was generated. A total of 2,900 realizations are used for the training of the RNN 
and 100 unseen realizations are used for testing. The simulated intensity evolution 
maps are uniformly downsampled at a constant propagation step of Δz = 0.13 m, 
yielding 101 intensity profiles along propagation for each simulated evolution map. 
At every one of the 101 steps, the intensity profile is convolved and downsampled 
with a 10 fs FWHM super-Gaussian temporal filter corresponding to 145 equally 
spaced bins in the �0:7;þ0:7½  ps

I
 time interval. The spectral intensity profiles are 

convolved and downsampled with a 2 nm FWHM super-Gaussian spectral filter 
resulting in 126 equally spaced intensity bins spanning from 1,425 to 1,675 nm. The 
temporal and spectral intensity profiles are normalized by the peak intensity over 
all realizations. From an experimental viewpoint, commonly employed devices 
to characterize short pulses, such as autocorrelators and spectrometers, only 
yield measurements related to the temporal and spectral intensities, respectively. 
Full-field characterization requires the use of more advanced techniques based on 
some form of phase retrieval or measurement such as frequency-resolved optical 
gating, and we therefore choose to only use transform-limited intensity profiles 
during the RNN training while the phase information is omitted. Note that the 
network is trained with intensity profiles in linear and logarithmic scale for the 
temporal and spectral intensity intensity evolution, respectively, as these are the 
scales commonly used for plotting these quantities. See Extended Data Fig. 1 for a 
comparison between the linear and logarithmic training results. When comparing 
with the experiments, to account for the slight input pulse asymmetry, the NLSE 
simulated intensity profiles of every map used in the training phase of the RNN 
were convolved and downsampled with a 10 fs FWHM super-Gaussian temporal 
filter corresponding to 151 equally spaced bins in the �0:62;þ0:85½  ps

I
 time 

interval. The spectral intensity profiles were convolved and downsampled  
similarly to the case of ideal higher-order soliton propagation but spanning  
from 1,450 to 1,700 nm.

The LSTM and two hidden layers consist of 161 nodes, each with rectified 
linear unit (ReLU) activations f ðxÞ ¼ maxð0; xÞ

I
, and the output layer consists 

of 151 and 126 nodes for temporal and spectral predictions, respectively, with 
sigmoid activation f ðxÞ ¼ 1= 1þ expð�xÞ½ :

I
 The network is trained for 60 and  

120 epochs with RMSprop optimizer34 and adaptive learning rate for the temporal 
and spectral intensity predictions, respectively.

The input of the RNN consists of 10 consecutive temporal or spectral intensity 
profiles hz − 10Δz..hz − Δz at a distance along the fibre of z − 10Δz to z − Δz.

A smaller number of intensity profiles was also found to give satisfactory 
results, but of course this is at the expense of the relative prediction error,  
which increases from 0.097 to 0.174 (temporal intensity evolution of higher-order 
soliton) when reducing the number of consecutive intensity profiles from  
10 to 5. As the number of consecutive intensity profiles used in the training is 
increased, the training time also increases and therefore the training process is 
always a compromise between prediction accuracy and the time required to  
train the network.

Supercontinuum generation. An ensemble of 1,300 numerical simulations was 
generated. A total of 1,250 realizations were used for training the RNN and 50 
realizations for testing. The simulated intensity evolution maps are uniformly 
downsampled at a constant propagation step of Δz = 0.2 mm, yielding 200 
intensity profiles along propagation for each simulated evolution. To reduce the 
computational load, when training the RNN to predict temporal intensity maps, 
the profiles at each of the 200 steps are convolved and downsampled with a 10 fs 
FWHM super-Gaussian temporal filter corresponding to 276 equally spaced bins 
spanning the �0:18;þ1:16½  ps

I
 time interval. Note that the asymmetry in the 

modelled time interval is implemented to account for the soliton self-frequency 
shift effect. When training the RNN from spectral intensity profiles, each spectrum 
is convolved and downsampled with a 2 nm FWHM super-Gaussian spectral filter 
such that the wavelength grid consisted of 251 spectral intensity bins spanning 
from 550 to 1,050 nm. The profiles are normalized by the peak intensity over all 
realizations and the spectral intensity profiles are converted to logarithmic scale.
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For the temporal intensity evolution, the LSTM and two hidden layers consist 
of 300 nodes each with ReLU activations, and the output layer consists of 276 
nodes with sigmoid activation. The network was trained for 120 epochs with 
RMSprop optimizer and an adaptive learning rate. For the spectral intensity 
evolution, the LSTM and two hidden layers consist of 250 nodes each with ReLU 
activations, and the output layer consists of 251 nodes with sigmoid activation. The 
network is trained for 100 epochs.

Normalized NLSE. Here, we used an ensemble of 1,000 numerical simulations, and 
950 and 50 realizations were used for training and testing the RNN, respectively. 
The simulated intensity evolution maps are uniformly downsampled at a constant 
propagation step Δξ = 0.004 (normalized units), yielding 101 intensity profiles 
along propagation for each simulated evolution. The temporal intensity profiles 
consist of 256 equally spaced bins spanning the �2:5;þ2:5½ 

I
 (normalized units) 

time interval. The spectral intensity profiles consist of 128 frequency bins whose 
spacing is determined by the pulse duration.The profiles are normalized by the 
peak intensity over all realizations and the spectral data are transformed to a 
logarithmic scale. The LSTM and two hidden layers consist of 300 nodes each 
with ReLU activations, and the output layer consists of 256 nodes with sigmoid 
activation for the temporal intensity predictions. For the spectral data, the network 
node numbers are 250 and 128, respectively. The networks were trained for 80 
epochs with RMSprop optimizer and adaptive learning rate.

Noise implementation. To study the sensitivity of the RNN prediction to input 
noise, we included ±10% and up to ±20% random (multiplicative) noise on the 
temporal intensity profiles generated from the normalized NLSE. This noisy data 
were then tested with the network trained on the noise-free data to evaluate the 
robustness of the network against noise.

Linear chirp. An ensemble of 6,000 normalized NLSE numerical simulations 
was generated with randomly varying linear frequency chirp. A total of 5,800 
realizations were used for training the RNN and 200 realizations for testing. 
Similarly to the unchirped normalized NLSE, the simulated intensity evolution 
maps are uniformly downsampled to 101 intensity profiles along propagation 
and the temporal axis consisted of 256 grid points in the range �2:5;þ2:5½ 

I
 

(normalized units). Along with the temporal intensity profile, the input chirp 
parameter is included to the network as an additional parameter. The LSTM and 
two hidden layers consist of 300 nodes each with ReLU activations, and the output 
layer consists of 256 nodes with sigmoid activation. The network was trained for 80 
epochs with RMSprop optimizer and adaptive learning rate.

Normalized GNLSE. When generalizing the RNN predictions over a wider 
range of input pulse characteristics and fibre parameters, an ensemble of 12,000 
numerical simulations was generated using the normalized form of the GNLSE; 
11,800 realizations were used for training the RNN and 200 realizations for 
testing. The simulated intensity evolution maps are uniformly downsampled at a 
constant propagation step of Δξ = 0.02 (normalized units), yielding 101 spectra 
along propagation for each simulated evolution. Each spectrum along the fibre is 
convolved and downsampled with a 8 nm FWHM super-Gaussian spectral filter 
such that the wavelength grid consisted of 132 spectral intensity bins spanning 
from 450 to 1,500 nm. The profiles are normalized by the peak intensity over 
all realizations and the data are transformed to logarithmic scale. A third-order 
dispersion parameter is included as an additional input parameter to the  
network. The LSTM and two hidden layers consist of 265 nodes each with  
ReLU activations, and the output layer consists of 132 nodes with sigmoid 
activation. The network was trained for 80 epochs with RMSprop optimizer and 
adaptive learning rate.

Multimode GNLSE. To evaluate the RNN ability to model the propagation of 
short pulses in a multimode fibre, we generated an ensemble of 1,000 numerical 
simulations using the multimode GNLSE; 950 realizations were used for training 
the RNN and 50 realizations for testing. Here, we consider the total field summed 
over the five simulated propagating modes. The simulated spectral evolution maps 
are uniformly downsampled at a constant propagation step of Δz = 5 mm, yielding 
50 spectra along propagation for each simulated evolution. Each spectrum along 
the fibre is convolved and downsampled with an 8 nm FWHM super-Gaussian 
spectral filter such that the wavelength grid consisted of 301 spectral intensity bins 
spanning from 600 to 3,000 nm. The profiles are normalized by the peak intensity 
over all realizations and the data are converted to logarithmic scale. The initial 
coupling conditions of the individual are included in the network as additional 
parameters. The LSTM and two hidden layers consist of 500 nodes each with ReLU 
activations, and the output layer consists of 301 nodes with sigmoid activation.  
The network was trained for 80 epochs with RMSprop optimizer and adaptive 
learning rate.

Data availability
The numerical data used in this work and a public version of the codes are available 
at https://gitlab.com/salmelal/rnnnonlinear and with full simulation datasets at 
https://doi.org/10.5281/zenodo.4304771 under an MIT licence.
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Extended Data Fig. 1 | Comparison of spectral intensity evolution modelling by the rNN when trained using data input in linear and logarithmic (dB) 
representation. The dashed red line shows the simulated spectra of a higher-order soliton (N = 6) at selected distances along the fibre similar to those 
plotted in Fig. 5. The solid blue lines shows the RNN prediction when trained directly with spectral data input in dB. The solid green line shows the RNN 
prediction (plotted in dB) when trained with spectral data input in linear scale.
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Extended Data Fig. 2 | Generalization of rNN applicability to modelling NLSe dynamics using normalized training simulations. Training data were 
generated using the normalized form of the NLSE (see Methods). The results are plotted in dimensional units. (a) and (b) shows the temporal and spectral 
evolution corresponding to the initial stage of higher-order soliton compression and breakup with soliton number N = 4, pulse duration (FWHM) of 300 fs 
and peak power of 157 W. (c) and (d) shows the temporal and spectral evolution corresponding to the initial stage of higher-order soliton compression and 
breakup with soliton number N = 7, pulse duration (FWHM) of 3 fs and peak power of 4.8 W. In each panel, we show the evolution map directly obtained 
from the numerical NLSE simulations and that obtained from the RNN network model. The RNN was trained with 950 normalized NLSE realizations where 
the soliton number was randomly varied in the range 1 to 7. The r.m.s. error (see Eq. (4) in Methods) computed over 50 test realizations was R = 0.152 and 
R = 0.077 for the temporal and spectral intensities, respectively.
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Extended Data Fig. 3 | inclusion of input pulse chirp. (a) and (b) shows temporal evolution for input pulse parameter similar to those in Extended Data 
Fig. 2(a) and (c), but when a linear chirp (parabolic phase) of C = − 5 and C = 5, respectively, was added to the input pulse (see Methods). The left and 
middle panels show temporal evolution from NLSE simulations and prediction by the RNN, respectively, and the right panel shows the comparison 
between these two at selected distances. The network was trained with 5900 NLSE realizations where the soliton number and chirp parameter were 
varied randomly in the range 1 to 7 and -8 to 8, respectively. The r.m.s. error computed over 100 test realizations is R = 0.156.
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Extended Data Fig. 4 | Generalization of rNN applicability to modelling GNLSe dynamics. Training data were generated using the normalized form of 
the GNLSE including Raman effect, self-steepening and third-order dispersion (see Methods). The results are plotted in dimensional units. The network 
was trained using 11800 normalized GNLSE realizations where the soliton number, normalized third-order dispersion parameter, and pulse duration 
were respectively randomly varied in the range 2 to 8, 1 to 9 and 30 and 130 fs (FWHM). (a) shows the results for a transform-limited N = 4 input pulse 
centered at 830 nm with 7.6 kW peak power and 40 fs duration. Corresponding fibre parameters are γ = 0.1 W−1m−1, β2 = − 8 × 10−27 s2m−1 and β3 = 9 × 10−41 
s3m−1. (b) shows the results for a transform-limited N = 7 input pulse with 2.9 kW peak power and 120 fs duration. Corresponding fibre parameters are 
γ = 0.0184 W−1m−1, β2 = − 5.1 × 10−27 s2m−1 and β3 = 4.3 × 10−41 s3m−1. (c) shows the results for a transform-limited N = 4.5 input pulse with 3.0 kW peak 
power and 60 fs duration. Corresponding fibre parameters are γ = 0.01 W−1m−1, β2 = − 1.7 × 10−27 s2m−1 and β3 = 6.5 × 10−42 s3m−1. In each panel, we show the 
evolution map directly obtained from the numerical GNLSE simulations and that obtained from the RNN network model. The r.m.s. error computed over 
200 test realizations is R = 0.092.
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Extended Data Fig. 5 | effect of input noise on rNN predictions. The left and right panels shows how ± 10 and ± 20 % relative random multiplicative 
intensity noise added to the examples shown in Extended Data Fig. 2(a) and (c) affect the RNN predictions (see also Methods). The r.m.s. error computed 
over 50 test realizations was R = 0.200 and R = 0.271 for the ± 10 and ± 20 % cases, respectively (R = 0.152 for noise-free data). Although we do note a 
residual shift in the point of maximum compression, the dynamics of the higher-order soliton compression are overall well reproduced even under noisy 
conditions.
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Extended Data Fig. 6 | Application of rNN to modelling multimode GNLSe dynamics. RNN modelling of nonlinear propagation of an ultrashort pulse of 
150 fs duration (FWHM) and 2.5 MW peak power with 1500 nm center wavelength in a 50 μm radius multimode silica fibre. The network was trained 
with 950 realizations where the energy distribution between the different modes at the fibre input was varied. (a-d) show the spectral evolution integrated 
over all the modes for input energy distributions as indicated. In each panel, we show the evolution map directly obtained from the numerical multimode 
GNLSE simulations and that obtained from the RNN network model. The r.m.s. error computed over 50 test realizations is R = 0.104.
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Extended Data Fig. 7 | Computation time comparison of GNLSe and rNN modelling. (a) Simulation time to compute evolution maps of supercontinuum 
similar to those presented in Fig. 6 using the GNLSE and RNN, as a function of the number of points Np in the temporal (or spectral) grid and number of 
computed maps as indicated in the parentheses. (b) Simulation time to compute evolution maps of multimode simulations similar to those shown in 
Extended Data Fig. 6 using the multimode GNLSE and RNN, as a function of the number of realizations for a constant number of modes and grid points.
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