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Solving integral equations in free  
space with inverse-designed ultrathin  
optical metagratings
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Nader Engheta3 & Albert Polman2

As standard microelectronic technology approaches fundamental 
limitations in speed and power consumption, novel computing strategies 
are strongly needed. Analogue optical computing enables the processing 
of large amounts of data at a negligible energy cost and high speeds. Based 
on these principles, ultrathin optical metasurfaces have been recently 
explored to process large images in real time, in particular for edge 
detection. By incorporating feedback, it has also recently been shown that 
metamaterials can be tailored to solve complex mathematical problems 
in the analogue domain, although these efforts have so far been limited to 
guided-wave systems and bulky set-ups. Here, we present an ultrathin Si 
metasurface-based platform for analogue computing that is able to solve 
Fredholm integral equations of the second kind using free-space visible 
radiation. A Si-based metagrating was inverse-designed to implement 
the scattering matrix synthesizing a prescribed kernel corresponding to 
the mathematical problem of interest. Next, a semitransparent mirror 
was incorporated into the sample to provide adequate feedback and thus 
perform the required Neumann series, solving the corresponding equation 
in the analogue domain at the speed of light. Visible wavelength operation 
enables a highly compact, ultrathin device that can be interrogated  
from free space, implying high processing speeds and the possibility  
of on-chip integration.

The world’s ever-growing need for efficient computing has been driving 
researchers from diverse research fields to explore alternatives to the 
current digital computing paradigm. The processing speed and energy 
efficiency of standard electronics have become limiting factors for novel 
disruptive applications entering our everyday life, such as artificial 
intelligence, machine learning, computer vision and many more. In this 
context, analogue computing has resurfaced and regained substantial 

attention as a complementary route to traditional architectures1–4. Spe-
cifically, the tremendous recent advances in the field of metamaterials 
and metasurfaces have been unlocking new opportunities for all-optical 
computing strategies, given the possibility of shaping optical fields in 
extreme ways over subwavelength thicknesses. The absence of bulky 
optical elements, in turn, enables on-chip integration, paving the way 
for hybrid optical and electronic data processing.
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approximation method: we assume an initial guess g0(u) = Iin(u), and 
successive approximations can be obtained by evaluating 
gi+1(u) = Iin (u) + ∫b

aK (u, v) gi (v)dv, whereupon eventually gn(u) con-
verges to the solution g(u) as n → ∞ (ref. 31). Here, we show how to 
physically implement this iterative procedure in an analogue fashion 
employing a Si metasurface coupled to a feedback system.

First, equation (1) is discretized by sampling its independent 
variables, u and v, over N points in the interval (a, b) to form two vec-
tors with such variables, u and v. The application of the integral opera-
tor ∫b

aK (u, v) [ ]dv  on the function g(u) is then analogous to the 
multiplication (or application) of a matrix operator K = K (u,v) (a−b)

N
 

on a vector g = g (u). Thus, equation (1) may be numerically approxi-
mated by the N × N matrix equation

g = Iin + Kg (2)

Second, the solution g is represented as a Neumann series 
g = ∑n (K)

n
Iin = (IN − K)−1 Iin , where IN is the N × N identity matrix.  

The convergence of the Neumann series demonstrates that the inverse 
operator (IN − K)-1  exists.

Next, it is possible to think of the N mathematical sampling points 
as N discrete physical modes, and thus g is a vector representing the 
complex amplitude of these modes on a given plane with a chosen 
direction. The integral operator can then be represented by a scatter-
ing matrix that performs matrix multiplication between these sets 
of modes.

If we consider a periodic metagrating, the input/output modes 
can be mapped into the N discrete diffraction channels determined by 
the periodicity and the wavelength, while the discretized integral 
operator K can be mapped onto the metasurface scattering matrix S 
that governs the coupling between these channels. Following the sche-
matics in Fig. 1, the discretized input Iin is a vector of length N containing 
the complex amplitudes of the plane waves addressing the system via 
its available diffraction channels, acting as seed guess g0 = Iin. The 
vector is multiplied by the metasurface scattering matrix upon its first 
reflection, resulting in a more refined guess g1 to the solution of the 
integral equation associated with K . The signal is then reflected by a 
semitransparent mirror and fed back to the grating for the next itera-
tion. Intuitively, the system performs an analogue Neumann series at 
the speed of light by iteratively applying the S matrix on the seed vector 
through multiple reflections, in the same way the mathematical integral 
operator is applied repeatedly on the initial guess function.

The entire computing metastructure is therefore composed of 
two elements: (1) a metagrating with a period that determines the 
number of input/output modes (grating orders) and a unit cell with 
tailored geometry defining the scattering matrix of interest and (2) a 
semitransparent mirror enabling feedback and in-coupling combined 
with a spacer layer.

The idea of using light to outsource specific computing tasks 
comes with several advantages. First, there is a clear enhancement in 
processing speeds as the computation is performed at the speed of 
light travelling through metamaterials with typical sizes smaller than 
or comparable with the wavelength of operation. Also, processing 
signals in the optical domain enable massive parallelization and may 
potentially avoid unnecessary analogue-to-digital conversion. As an 
example, recent works have shown how several image processing tasks 
can be performed before the image is discretized into pixels5–19, relying 
on the possibility of engineering the angular response of metasurfaces 
and hence imparting instantaneously a mathematical operation to the 
spatial content of an input signal11,12,20. Finally, analogue computing 
meta-devices can be passive, implying an extremely low energy usage. 
Recently, broader applications of this approach have been appearing 
in different fields, ranging from silicon photonics21–23 to organic neuro-
morphic electronics24,25, that is, architectures that mimic the biological 
brain’s function, and even acoustics26–28.

A key question is whether it is possible to go beyond simple image 
processing tasks and focus on a more complex mathematical problem, 
such as solving an integro-differential equation. The concept of a 
wave-based integral equation solver has been recently demonstrated 
in the microwave regime for symmetric and non-symmetric kernels 
and in a multi-frequency parallel fashion29,30, but relying on guided 
waves in bulky metamaterial set-ups. An important next challenge is to 
demonstrate if such a complex mathematical operation can be carried 
out in the optical spectral range, ideally within an ultrathin form factor 
that can be interrogated through free-space radiation and easily com-
bined with similar devices to represent operator composition. This will 
enable the fabrication of far more compact on-chip devices operated at 
wavelengths that are widely used for communication technology. This 
dramatic size reduction further implies a drastic increase in processing 
speeds, as light has to travel much shorter distances.

Here, we demonstrate a Si metasurface-based optical platform that 
combines a tailored scattering matrix design and a feedback system 
to enable the solution of Fredholm integral equations of the second 
kind from the far field:

g (u) = Iin (u) +
b

∫
a

K (u, v) g (v)dv, (1)

where g(u) is the unknown solution of equation (1), K(u, v) is the kernel 
of the integral operator and Iin(u) is an arbitrary input function. Mathe
matically, this form of equation may be analytically solvable if it is in 
separable form or for some special kernels, and an inversion formula 
may exist (for example, a Fourier transform). However, when certain 
convergence conditions for the kernels are satisfied29,31,32, a general 
technique to solve equation (1) is to exploit the Neumann successive 

g0(u) = Iin(u) g1(u) = Iin(u) + SIin(u) g2(u) = Iin(u) + S Iin(u) + S2Iin(u) g(u) = (IN − S)−1 Iin(u)

Iin(u)
u1 u2 u3

Mirror

Metagrating

Fig. 1 | Si metagrating-based integral equation solver. An input vector Iin is fed 
to the system in the form of N plane waves with different complex amplitudes 
incident along N diffraction channels. The signal interacts repeatedly with 
a metagrating, bouncing back from a partially reflecting mirror, each time 
multiplied by the metagrating scattering matrix and therefore building up the 

terms of a Neumann series of subsequent matrix multiplications required to 
solve the integral equation. For the sake of simplicity, the formulas underneath 
the panels do not take into account the semitransparent mirror scattering matrix 
at this stage.
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Kernel design
The key requirement is the careful design of the metagrating unit cell 
to synthesize the prescribed S matrix

S1 = (
S1R S1T

⊺

S1T S1R′
) (3)

where S1R and S1T are the reflection and transmission sub-blocks, while 
S1R' represents reflection from the substrate side. Since the Neumann 
series is performed in reflection, only the reflection sub-block S1R needs 
to be designed: it contains the complex reflection coefficients connect-
ing the diffraction channels in the spacer layer above the metagrating. 
To prove the generality of our approach, we began our problem by 
choosing a random passive and reciprocal (that is, symmetric) matrix 
with N = 3:

S1R =
⎛
⎜⎜⎜
⎝

0.239 + 0.052 i −0.233 − 0.083 i 0.246 + 0.329 i

−0.233 − 0.083 i −0.381 − 0.514 i 0.339 − 0.262 i

0.246 + 0.329 i 0.339 − 0.262 i −0.314 + 0.156 i

⎞
⎟⎟⎟
⎠

. (4)

Next, we set the periodicities p and w of the grating (Fig. 2a) to 
have three diffraction orders in reflection at the target wavelength 
λ0 = 706 nm. We choose this wavelength because (1) Si is rather trans-
parent, (2) light sources in this spectral range are readily accessible and 
(3) the corresponding submicrometre unit cell footprint enables com-
pact circuit design and integration. Specifically, we choose p = 825 nm 
while the orthogonal periodicity w = 400 nm is set to be subwavelength. 
This enhances the degrees of freedom for the unit cell design without 
opening additional diffraction channels. We optimize the metagrating 
unit cell geometry using the adjoint method33–37, setting the height h 
of the etched silicon nanostructure to 150 nm. The resulting optimized 
unit cell (Fig. 2b) consists of a Si nanostructure on a sapphire substrate 
embedded in a transparent SiO2 spacer layer38–40. The figure of merit 
(FOM) to be minimized during the optimization is the sum of  
the squared ‘distances’ on the complex plane between the 
complex-valued matrix elements of the S matrix of a designed  
geometry (as in Fig. 2b) and the prescribed ones in equation (4): 
FOM = ∑i,j

||S1Rij − S1Roptimizationij
||
2
 (Supplementary Information).

As shown in Fig. 2c, the optimized metagrating approximates very 
well the desired S matrix, achieving a figure of merit as low as 0.058. This 
demonstrates that it is possible to inverse-design metagratings with 
a prescribed S matrix, showing the feasibility of this optical comput-
ing concept for the solution of integral equations with a wide range  
of kernels. As shown in the literature41, a similar inverse-designed meta-
grating can be quickly generated by neural networks after adequate 

training on images of topology-optimized unit cells. We envision a 
similar strategy for our proposed scheme, hence making it possible to 
rapidly converge to a metagrating design given a certain kernel matrix.

Compared to optical vector–matrix multiplication systems put 
forward in the literature42–46 that consist of bulky optical elements, the 
metagrating proposed here realizes matrix multiplication in phase and 
amplitude in a single subwavelength-thick surface. This is a massive 
advantage as it opens up the possibility of hybrid analogue–digital 
platforms on a single chip, where the analogue part can ease the burden 
of standard digital computing. Moreover, a thin platform is less prone 
to phase errors due to long propagation distances.

Analogue matrix inversion
What we have discussed so far concerns only the design of the meta
grating scattering matrix mapping the discretized integral kernel 
operator K in equation (2). Next, to find the solution of the integral 
equation, it is crucial to have a feedback system that repeatedly returns 
the signal reflected from the metagrating back to it so that the Neumann 
series is constructed. To this end, the SiO2 spacer is covered with a 
15-nm-thick Au layer to form a semitransparent mirror (Fig. 3a)47. The 
distance between the metagrating and mirror is 487 nm ≈ λ0/nSiO2 
(where nSiO2 is the SiO2 refractive index) to avoid near-field coupling, 
which may introduce additional modes into the system. The S matrix 
characterizing the mirror is

M = (
MR MT

⊺

MT MR′
) (5)

where MR and MR′ are the sub-blocks representing reflection from the 
air and SiO2 side respectively, and MT is the transmission counterpart. 
Including the mirror, the scattering matrix of the entire metastructure 
(grating, SiO2 spacer and mirror) becomes

S2 = (
S2R S2T

⊺

S2T S2R′
) (6)

The Neumann series, and thus the solution of equation (2), is 
embedded in S2. The transmission of the entire stack, as measured 
in our experiment, is composed of a sum of terms each correspond-
ing to an increasing number of interactions with the metagrating  
(Figs. 1 and 3a)48:

S2T = S1TMT + S1TMR′S1RMT + S1T(MR′S1R)2MT + ...

= S1T(I3 −MR′S1R)−1MT.
(7)
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Fig. 2 | Kernel design. a, Schematic illustration of a two-dimensional 
metagrating (periodicities p and w) with a suitably engineered unit cell geometry. 
The black arrow indicates the polarization (Transverse Electric, TE) of the 
incoming E field. b, Top view of the optimum metagrating unit cell made of Si 

(blue) and SiO2 (light blue). c, Simulation results for the S1R matrix elements of 
the inverse-designed metagrating (red crosses) and the corresponding desired 
matrix elements (blue circles).
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The transmission sub-block S2T is composed of the inverse opera-
tor (I3 −MR′S1R)−1 solving equation (2) multiplied by the mirror trans-
mission MT and by the metasurface transmission S1T. In other words, 
light is coupled into the system passing through the mirror first, and 

then the solution is outcoupled via the metasurface. Hence, to extract 
the solution computed by the metastructure, that is, the linear combi-
nation of complex amplitudes of the diffracted modes inside the spacer 
layer that converges after multiple passes, MT and S1T must be 
de-embedded from S2T. Figure 3b compares the solution S−11T S2TM

−1
T  

provided by the simulated metastructure transmission to the ideal 
solution of equation (2) with K = MR′S1R and Iin equal to the vectors 
belonging to the canonical basis generating the space of all possible 
input vectors (that is, (1,0,0)⊺, (0, 1,0)⊺and (0,0, 1)⊺). Any input vector 
can be expressed as a linear combination of these, and given the linear-
ity of the metasurface, agreement in the response for these basic excita-
tions ensures that the structure can solve the integral equation problem 
for arbitrary inputs. The metasurface-based analogue solution and the 
ideal solution show good agreement for all the inputs, both in terms 
of the real and imaginary parts. Minor discrepancies are ascribed to 
the small difference between the desired S matrix and the optimized 
one (Fig. 2c) and this result demonstrates that it is possible to design 
the desired kernel K and invert (IN − K) in a fully analogue fashion.

Nanofabrication and optical characterization
Next, we present the experimental implementation of an all-optical 
integral-equation-solving metasurface using the optimized geometry 
described above. The analogue solution of equation (2) is built up inside 
the spacer layer in the form of a collection of complex wave ampli-
tudes. Despite the fact that the complex amplitudes readily exist just 
below the surface of the kernel and can be utilized by another similar 
device as the one presented herein, these values are hard to retrieve 
in the far field, where a meaningful phase reference at each angle is 
difficult to define. Hence, similar to spectral reflectometry, we obtain 
a more robust measurement by comparing the spectroscopic power 
measurements over a broad wavelength range to simulations of the 
optimized structure. Within spectral reflectometry, a limited number 
of chosen parameters such a material layer thickness, Lorentz oscil-
lator frequency, damping coefficients and so on are fitted to a vastly 
overdetermined system to obtain Kramers–Kronig-safe models from 
which any value can be derived, including complex amplitudes within 
a material stack at a specific frequency. Here we do something similar 
and allow ourselves only one fitted parameter, a dilation operation 
on the structure, possibly representing fabrication complications, 
to generate internally consistent spectral traces for all of the possible 
inputs. We show that minor perturbations of this single parameter 
are enough to generate an excellent fit and use this data to retrieve an 
estimate for the experimental solution provided by the metastructure.

First, the optimized metagrating geometry was patterned over a 
150-nm-thick Si(100) film on a sapphire (Al2O3) substrate by means of 
electron-beam lithography and reactive ion etching. Next, the meta-
surface was embedded in SiO2 by spin coating and annealing a silica 
glass sol–gel layer that planarizes the structure, followed by a final 
SiO2 sputtering that allows fine control of the total spacer thickness. 
Finally, a 15-nm-thick Au layer was evaporated on the structure using 
an organic adhesion monolayer (details concerning the fabrication 
can be found in the Methods)49,50.

First, we analyse the fabricated Si metasurface without the SiO2 
spacer and the semitransparent mirror. As shown in Fig. 4a, the fabri-
cated structures after the Si reactive ion etching step are uniform and 
smooth over a large area. Next, it is important to compare the optimized 
unit cell to the experimental one. Figure 4b shows that the etched unit cell 
follows very closely the optimized contour (red dashed lines in Figs. 2b  
and 4b). To corroborate this feature, the transmittance of normal inci-
dent light to the zeroth diffraction order was measured and compared 
to its simulated counterpart. In the simulation, the optimized structure 
described above was used. The transmittance spectrum was acquired 
over a broad wavelength range (λ0 = 500–800 nm) to obtain maximum 
sensitivity in the comparison between experiment and simulation. 
Figure 4c demonstrates strong agreement between simulated and 
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Fig. 3 | Analogue matrix inversion. a, The solution of equation (2) is built up 
inside the spacer layer in the form of a collection of complex wave amplitudes, 
one for each discrete diffraction channel. The solution is outcoupled and read 
out in transmission. b, Analogue solution (real (Re) and imaginary (Im) parts)  
of the integral equation (dashed lines) obtained from the simulation results  
for the metastructure transmission, compared with the ideal theoretical  
solution g = (IN − K)−1

Iin (solid lines), for the three orthogonal input vectors 
(1,0,0)⊺, (0, 1,0)⊺and (0,0, 1)⊺. The wavelength of operation in this simulation  
is λ0 = 706 nm.
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measured optical spectra, further confirming the suitability of the 
combined electron-beam lithography and reactive ion etching pro-
cess to fabricate precisely tailored metagratings for analogue optical 
computing in the visible spectral range.

Next, the cross-section in Fig. 4d shows how the SiO2 spacer confor-
mally embeds the metagrating with no detectable air inclusions, creat-
ing a smooth planar top surface. The final thickness of the layer with the 
embedded metagrating amounts to 638 nm. Again, the transmittance 
is measured at this step, once more experimentally reproducing the key 
features present in the simulated ideal spectrum (Fig. 4e). The small 
discrepancies between experiment and simulation in Fig. 4c–e can be 
attributed to minor fabrication imperfections, such as a slight differ-
ence in the SiO2 refractive index between experiment and simulation, 
unintended resist overexposure or underexposure and non-perfectly 
straight Si etching. Finally, the Au film evaporation concludes the  
fabrication, providing the metastructure with a semitransparent  
mirror, and hence the required feedback system.

Figure 5 shows the measured transmittance spectra of the fully 
fabricated metastructure relating to each S parameter belonging to 
S2T or, equivalently, the fraction of transmitted light going into each 
diffraction channel when the metastructure is illuminated through 
each input channel above the mirror. Specifically, each panel shows 
the amplitudes squared of the elements belonging to each column of 
S2T. Note that the input and output angles are changing with the wave-
length of illumination according to the grating equation (Methods). 
Each panel in Fig. 5 also shows the simulated spectra of the designed 
ideal metastructure in Fig. 3a that gives the solutions shown in Fig. 3b.

The agreement over a broad wavelength range between simulation 
and experiment is clear: for each matrix element, the spectral features 
present in the simulation are reproduced experimentally. Small dis-
crepancies between experiment and simulation are attributed to minor 
fabrication imperfections, as described above. Finally, taking advan-
tage of the broad wavelength range of the data and minor perturbations 
to the structure in the simulation, it is possible to retrieve an estimate 
for the experimental solution provided by the fabricated meta
structure, including its uncertainty (Supplementary Information). 
Figure 6 compares the latter experimental solution to the ideal solution 
of equation (2) for the canonical inputs (1,0,0)⊺, (0, 1,0)⊺and (0,0, 1)⊺. 
Although the accuracy of the solution is reduced compared to that 
shown in Fig. 3b and the wavelength of operation is blueshifted by 7 nm, 
the good agreement and similar trend with the ideal solution demon-
strates the all-optical integral-equation-solving concept 
experimentally.

Conclusions
We have presented a Si-based optical metastructure that solves  
Fredholm integral equations of the second kind in a fully analogue fashion  
at optical frequencies. First, we stated the mathematical problem in 
terms of the Neumann series (that is, successive approximations). 
Next, we discussed the analogy between the solving of the integral 
equation and the behaviour of an optimized periodic metagrating 

coupled to a feedback system. At the foundations of this mapping lies 
the possibility of designing the S matrix of a periodic structure by set-
ting its periodicity (that is, the number of input/output modes and 
hence the dimension of the S matrix) and optimizing its unit cell (that 
is, optimizing the coupling of light into the defined diffraction modes 

b

c

a

d

e

Si

SiO2

Al2O3

500 550 600 650 700 750 800

Wavelength (nm)

0

0.2

0.4

Tr
an

sm
itt

an
ce

Simulation
Experiment

500 550 600 650 700 750 800

Wavelength (nm)

0

0.2

0.4

Tr
an

sm
itt

an
ce

Simulation
Experiment

0 100 200 300 400 500 600 700 800
x (nm)

0

100

200

300
y 

(n
m

)
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integral equation solver. a, Tilted scanning electron microscopy (SEM) image 
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collected (red arrow, inset) as a function of incident wavelength. d, SEM image of 
a focused-ion-beam-milled cross-section of the same metagrating embedded in 
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in amplitude and phase). Consequently, we showed how the designed 
metastructure effectively solves the problem of interest and compared 
the metasurface-based solution to the ideal solution. We showed that 
electron-beam lithography and reactive ion etching provide the spatial 
resolution required to create a hardware representation of a prede-
fined kernel, with relatively small deviations between experiment and 
simulations. We optically characterized the output for different input 
signals, showing good agreement with the ideal simulated response.

Our results demonstrate the possibility of solving complex mathe
matical problems and a generic matrix inversion at speeds that are 
far beyond those of typical digital computing methods. The solution 
converges (within a difference from the infinite sum that is smaller than 

the standard double-precision, that is 64 bits) in 60 iterations, cor-
responding to a processing time of about 349 fs, orders of magnitude 
faster than the clock speed of a conventional processor (Supplemen-
tary Fig. 3). Operation in the visible spectral range in combination with 
deep-subwavelength fabrication resolution creates metastructures 
that are submicrometres thick. This represents a very high degree of 
circuit integration given the complexity of the mathematical operation 
performed in this small volume.

Interestingly, the same metagrating–feedback iterative approach 
can also be applied to Fredholm integral equations of the first kind. 
Moreover, it is possible to scale up the dimensionality of the problem, 
increasing the number of input/output ports by using more diffraction 
orders or by encoding information in the polarization state of light 
(Supplementary Information)35,51. One key advantage of our scheme is 
the possibility of integrating many designs within a unique feedback 
system, thus enabling parallelization whenever this is compatible with 
the problem under study.

Further extensions of this work may explore non-symmetric  
kernels in a transmissive set-up and include nonlinear materials  
within the feedback system (for example, replacing the SiO2 spacer 
layer) to explore nonlinear mathematical problems. Additionally, 
nonlinearity could also be applied after processing the information via 
linear operations with a dedicated external nonlinear device.

Finally, switchable metagratings (for example, using phase change 
materials or mechanical modulation) could be envisioned to dynami-
cally tune the encoded mathematical operation, paving the way for 
all-optical reconfigurable computing circuitry, solving problems of 
further enhanced complexity.
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Fig. 5 | Optical characterization of S2T. a–c, Experimental (dashed lines) and 
simulated (solid lines) transmittance spectra of the completed metastructure. 
Insets show a schematic visualization of the metastructure indicating the 

exciting input port (green arrows) representing orthogonal unit vectors,  
and the three output ports (yellow, orange and blue arrows, matching the 
corresponding spectra). The input polarization is TE for all panels.
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Methods
Fabrication
The sample was fabricated following the steps below:

•	 The c-Si on Al2O3 substrates were acquired from MTI. The c-Si 
(orientation, (100)) layer was 500 nm thick, polished (surface 
roughness, <2.5 nm) and undoped. The sapphire (orientation, 
R-plane) substrate was 0.46 mm thick and double-side polished 
(surface roughness, <0.3 nm on the front side and optical grade 
polish on the back). The substrate was cleaned in base pira-
nha, and the c-Si was etched to the final metasurface thickness 
(h = 150 nm) via reactive ion etching employing CHF3, SF6 and O2. 
The c-Si film thickness was checked with Filmetrics F20.

•	 After an O2 plasma surface treatment, a 50-nm-thick layer of 
hydrogen silsesquioxane negative-tone resist was spin-coated 
and baked for 2 min at 180 °C.

•	 The metasurface was patterned into the hydrogen silsesqui-
oxane layer by exposure using a Raith Voyager electron-beam 
lithography system (50 kV, dose 2,300 μC cm–2) and develop-
ment in tetramethylammonium hydroxide for 60 s at 50 °C.

•	 The pattern was then transferred into the c-Si by a two-step reac-
tive ion etching process employing Cl2, HBr and O2. Next, the 
sample was cleaned in acid piranha for 10 minutes.

•	 After another O2 plasma surface treatment, a 100-nm-thick 
layer of SiO2 sol–gel (Nanoglass E1200 3:1 in 1-butanol)50 was 
spin-coated and baked for 3 min at 45 °C and 2 min at 200 °C. 
This step was repeated three times.

•	 The sample was annealed at 800 °C for 10 min. The temperature 
was ramped up from room temperature to 800 °C in 8 min  
and, after 10 min, ramped down again to room temperature  
in 5 min.

•	 The SiO2 thickness was checked with Filmetrics F20 and a pro-
filometer (KLA, Tencor P7). Additional SiO2 was sputtered with 
Polyteknik Flextura M506 S using a Si source until a total thick-
ness of 638 nm was reached.

•	 A 3-aminopropyl trimethoxysilane adhesion monolayer was 
chemically deposited on the sample49.

•	 A 15-nm-thick Au layer was evaporated with a Polyteknik Flextura 
M508 E electron-beam evaporator.

Optical characterization
The data in Fig. 4c,e were collected with a Spectra Pro 2300i spec-
trometer equipped with a Pixis 400 CCD (charge-coupled device). 
The sample was illuminated with collimated white light from a SuperK 
EXTREME/FIANIUM supercontinuum laser. The zeroth-order transmit-
ted light was collected by an integrating sphere and sent to the spec-
trometer through a multimode fibre. Light was polarized as depicted 
in Fig. 2a (TE).

The data in Fig. 5 were collected with a different configuration. 
The illumination was provided by the same SuperK EXTREME/FIANIUM 
supercontinuum white light laser that was monochromated (2 nm 

bandwidth) by a Laser Line Tunable Filter from Photon Etc. The set-up 
consisted of two concentric rotating stages. The sample was mounted 
on the inner rotating stage (Rot. stage 1 in Supplementary Fig. 8) while 
an optical power meter (PM100USB with photodiode power sensor 
S121C from Thorlabs) was mounted on the outer rotating stage (Rot. 
stage 2). This configuration allows independent control of the input 
(θ0) and output (θt) angles. Light is polarized before impinging on the 
sample, and the illumination and collection angles are changed as the 
wavelength is swept following the grating equation.
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